Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 1139, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271907

RESUMEN

With recent advances in multi-color super-resolution light microscopy, it is possible to simultaneously visualize multiple subunits within biological structures at nanometer resolution. To optimally evaluate and interpret spatial proximity of stainings on such an image, colocalization analysis tools have to be able to integrate prior knowledge on the local geometry of the recorded biological complex. We present MultiMatch to analyze the abundance and location of chain-like particle arrangements in multi-color microscopy based on multi-marginal optimal unbalanced transport methodology. Our object-based colocalization model statistically addresses the effect of incomplete labeling efficiencies enabling inference on existent, but not fully observable particle chains. We showcase that MultiMatch is able to consistently recover existing chain structures in three-color STED images of DNA origami nanorulers and outperforms geometry-uninformed triplet colocalization methods in this task. MultiMatch generalizes to an arbitrary number of color channels and is provided as a user-friendly Python package comprising colocalization visualizations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Color , Algoritmos , ADN/química , ADN/metabolismo , Microscopía/métodos , Programas Informáticos
2.
Light Sci Appl ; 13(1): 244, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251586

RESUMEN

The study of mitochondria is a formidable challenge for super-resolution microscopy due to their dynamic nature and complex membrane architecture. In this issue, Ren et al. introduce HBmito Crimson, a fluorogenic and photostable mitochondrial probe for STED microscopy and investigate how mitochondrial dynamics influence the spatial organization of mitochondrial DNA.

3.
Nat Commun ; 15(1): 6914, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134548

RESUMEN

Mitochondrial oxidative phosphorylation (OXPHOS) fuels cellular ATP demands. OXPHOS defects lead to severe human disorders with unexplained tissue specific pathologies. Mitochondrial gene expression is essential for OXPHOS biogenesis since core subunits of the complexes are mitochondrial-encoded. COX14 is required for translation of COX1, the central mitochondrial-encoded subunit of complex IV. Here we describe a COX14 mutant mouse corresponding to a patient with complex IV deficiency. COX14M19I mice display broad tissue-specific pathologies. A hallmark phenotype is severe liver inflammation linked to release of mitochondrial RNA into the cytosol sensed by RIG-1 pathway. We find that mitochondrial RNA release is triggered by increased reactive oxygen species production in the deficiency of complex IV. Additionally, we describe a COA3Y72C mouse, affected in an assembly factor that cooperates with COX14 in early COX1 biogenesis, which displays a similar yet milder inflammatory phenotype. Our study provides insight into a link between defective mitochondrial gene expression and tissue-specific inflammation.


Asunto(s)
Ciclooxigenasa 1 , Complejo IV de Transporte de Electrones , Inflamación , Hígado , Fosforilación Oxidativa , Especies Reactivas de Oxígeno , Animales , Femenino , Humanos , Masculino , Ratones , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Proteínas de la Membrana , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Especies Reactivas de Oxígeno/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo
4.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891055

RESUMEN

Intracellular cargo delivery via distinct transport routes relies on vesicle carriers. A key trafficking route distributes cargo taken up by clathrin-mediated endocytosis (CME) via early endosomes. The highly dynamic nature of the endosome network presents a challenge for its quantitative analysis, and theoretical modelling approaches can assist in elucidating the organization of the endosome trafficking system. Here, we introduce a new computational modelling approach for assessment of endosome distributions. We employed a model of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with inherited mutations causing dilated cardiomyopathy (DCM). In this model, vesicle distribution is defective due to impaired CME-dependent signaling, resulting in plasma membrane-localized early endosomes. We recapitulated this in iPSC-CMs carrying two different mutations, TPM1-L185F and TnT-R141W (MUT), using 3D confocal imaging as well as super-resolution STED microscopy. We computed scaled distance distributions of EEA1-positive vesicles based on a spherical approximation of the cell. Employing this approach, 3D spherical modelling identified a bi-modal segregation of early endosome populations in MUT iPSC-CMs, compared to WT controls. Moreover, spherical modelling confirmed reversion of the bi-modal vesicle localization in RhoA II-treated MUT iPSC-CMs. This reflects restored, homogeneous distribution of early endosomes within MUT iPSC-CMs following rescue of CME-dependent signaling via RhoA II-dependent RhoA activation. Overall, our approach enables assessment of early endosome distribution in cell-based disease models. This new method may provide further insight into the dynamics of endosome networks in different physiological scenarios.


Asunto(s)
Endosomas , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Endosomas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Endocitosis , Mutación/genética , Simulación por Computador , Proteína de Unión al GTP rhoA/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Imagenología Tridimensional , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Biológicos , Tropomiosina/metabolismo , Tropomiosina/genética
5.
Proc Natl Acad Sci U S A ; 121(19): e2317703121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38687792

RESUMEN

Fluorescence labeling of chemically fixed specimens, especially immunolabeling, plays a vital role in super-resolution imaging as it offers a convenient way to visualize cellular structures like mitochondria or the distribution of biomolecules with high detail. Despite the development of various distinct probes that enable super-resolved stimulated emission depletion (STED) imaging of mitochondria in live cells, most of these membrane-potential-dependent fluorophores cannot be retained well in mitochondria after chemical fixation. This lack of suitable mitochondrial probes has limited STED imaging of mitochondria to live cell samples. In this study, we introduce a mitochondria-specific probe, PK Mito Orange FX (PKMO FX), which features a fixation-driven cross-linking motif and accumulates in the mitochondrial inner membrane. It exhibits high fluorescence retention after chemical fixation and efficient depletion at 775 nm, enabling nanoscopic imaging both before and after aldehyde fixation. We demonstrate the compatibility of this probe with conventional immunolabeling and other strategies commonly used for fluorescence labeling of fixed samples. Moreover, we show that PKMO FX facilitates correlative super-resolution light and electron microscopy, enabling the correlation of multicolor fluorescence images and transmission EM images via the characteristic mitochondrial pattern. Our probe further expands the mitochondrial toolkit for multimodal microscopy at nanometer resolutions.


Asunto(s)
Aldehídos , Colorantes Fluorescentes , Microscopía Fluorescente , Mitocondrias , Mitocondrias/metabolismo , Humanos , Colorantes Fluorescentes/química , Aldehídos/metabolismo , Aldehídos/química , Microscopía Fluorescente/métodos , Células HeLa , Reactivos de Enlaces Cruzados/química , Animales , Membranas Mitocondriales/metabolismo
6.
Cell Death Differ ; 31(4): 469-478, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503846

RESUMEN

One hallmark of apoptosis is the oligomerization of BAX and BAK to form a pore in the mitochondrial outer membrane, which mediates the release of pro-apoptotic intermembrane space proteins into the cytosol. Cells overexpressing BAX or BAK fusion proteins are a powerful model system to study the dynamics and localization of these proteins in cells. However, it is unclear whether overexpressed BAX and BAK form the same ultrastructural assemblies following the same spatiotemporal hierarchy as endogenously expressed proteins. Combining live- and fixed-cell STED super-resolution microscopy, we show that overexpression of BAK results in novel BAK structures, which are virtually absent in non-overexpressing apoptotic cells. We further demonstrate that in wild type cells, BAK is recruited to apoptotic pores before BAX. Both proteins together form unordered, mosaic rings on apoptotic mitochondria in immortalized cell culture models as well as in human primary cells. In BAX- or BAK- single-knockout cells, the remaining protein is able to form rings independently. The heterogeneous nature of these rings in both wild type as well as single-knockout cells corroborates the toroidal apoptotic pore model.


Asunto(s)
Apoptosis , Mitocondrias , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína X Asociada a bcl-2 , Animales , Humanos , Ratones , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo
7.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253420

RESUMEN

Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila melanogaster , Membranas Mitocondriales , Citoesqueleto , Membranas Asociadas a Mitocondrias , Proteínas de Drosophila/genética
8.
iScience ; 27(1): 108700, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38213623

RESUMEN

Mitochondria are key organelles to provide ATP for synaptic transmission. This study aims to unravel the structural adaptation of mitochondria to an increase in presynaptic energy demand and upon the functional impairment of the auditory system. We use the anteroventral cochlear nucleus (AVCN) of wild-type and congenital deaf mice before and after hearing onset as a model system for presynaptic states of lower and higher energy demands. We combine focused ion beam scanning electron microscopy and electron tomography to investigate mitochondrial morphology. We found a larger volume of synaptic boutons and mitochondria after hearing onset with a higher crista membrane density. In deaf animals lacking otoferlin, we observed a shallow increase of mitochondrial volumes toward adulthood in endbulbs, while in wild-type animals mitochondria further enlarged. We propose that in the AVCN, presynaptic mitochondria undergo major structural changes likely to serve higher energy demands upon the onset of hearing and further maturation.

9.
Front Cell Dev Biol ; 11: 1178992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635868

RESUMEN

In mammals, spatial orientation is synaptically-encoded by sensory hair cells of the vestibular labyrinth. Vestibular hair cells (VHCs) harbor synaptic ribbons at their presynaptic active zones (AZs), which play a critical role in molecular scaffolding and facilitate synaptic release and vesicular replenishment. With advancing age, the prevalence of vestibular deficits increases; yet, the underlying mechanisms are not well understood and the possible accompanying morphological changes in the VHC synapses have not yet been systematically examined. We investigated the effects of maturation and aging on the ultrastructure of the ribbon-type AZs in murine utricles using various electron microscopic techniques and combined them with confocal and super-resolution light microscopy as well as metabolic imaging up to 1 year of age. In older animals, we detected predominantly in type I VHCs the formation of floating ribbon clusters, mostly consisting of newly synthesized ribbon material. Our findings suggest that VHC ribbon-type AZs undergo dramatic structural alterations upon aging.

11.
Commun Biol ; 6(1): 674, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369761

RESUMEN

STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that restoring STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.


Asunto(s)
Aprendizaje Profundo , Microscopía Fluorescente/métodos , Imagenología Tridimensional
12.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747618

RESUMEN

STED microscopy is widely used to image subcellular structures with super-resolution. Here, we report that denoising STED images with deep learning can mitigate photobleaching and photodamage by reducing the pixel dwell time by one or two orders of magnitude. Our method allows for efficient and robust restoration of noisy 2D and 3D STED images with multiple targets and facilitates long-term imaging of mitochondrial dynamics.

13.
J Shoulder Elbow Surg ; 32(2): 383-391, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36206984

RESUMEN

BACKGROUND: There are no generally accepted guidelines for polyethylene (PE) glenoid component cementation techniques. In particular, it is not known whether the backside of a PE glenoid should be fully or partially cemented-or not cemented at all. We hypothesized that cementing techniques would have an impact on cement mantle volume and integrity, as well as biomechanical stability, measured as micromotion under cyclic loading. METHODS: To address our hypothesis, 3 different cementation techniques using a single 2-peg PE glenoid design with polyurethane foam were compared regarding (1) the quality and quantity of the cement mantle and (2) biomechanical stability after cyclic loading in vitro. Eight identically cemented glenoids per group were used. Group A underwent cement application only into the peg holes, group B received additional complete cement mantle application on the backside of the glenoid, and group C received the same treatment as group B but with additional standardized drill holes in the surface of the glenoid bone for extra cement interdigitation. All glenoids underwent cyclic edge loading by 105 cycles according to ASTM F2028-14. Before and after loading, cement mantle evaluation was performed by XtremeCT and biomechanical strength and loosening were evaluated by measuring the relative motion of the implants. RESULTS: The cement mantle at the back of the implant was incomplete in group A as compared with groups B and C, in which the complete PE backside was covered with a homogeneous cement mantle. The cement mantle was thickest in group C, followed by group B (P = .006) and group A (P < .001). We did not detect any breakage of the cement mantle in any of the 3 groups after testing. Primary stability during cyclic loading was similar in all groups after the "running-in" phase (up to 4000 cycles). Gross loosening did not occur in any implant. CONCLUSIONS: Coverage of the PE glenoid with cement was reproducible in the fully cemented groups (ie, groups B and C) as compared with relevant cement defects in group A. The addition of cement to the back of the PE glenoid and additional drill holes in the glenoid surface did not improve primary stability in the tested setting.


Asunto(s)
Artroplastía de Reemplazo de Hombro , Articulación del Hombro , Humanos , Articulación del Hombro/diagnóstico por imagen , Articulación del Hombro/cirugía , Polietileno , Cementación/métodos , Artroplastía de Reemplazo de Hombro/métodos , Tomografía Computarizada por Rayos X , Cementos para Huesos , Diseño de Prótesis , Falla de Prótesis
14.
Proc Natl Acad Sci U S A ; 119(52): e2215799119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534799

RESUMEN

Capturing mitochondria's intricate and dynamic structure poses a daunting challenge for optical nanoscopy. Different labeling strategies have been demonstrated for live-cell stimulated emission depletion (STED) microscopy of mitochondria, but orthogonal strategies are yet to be established, and image acquisition has suffered either from photodamage to the organelles or from rapid photobleaching. Therefore, live-cell nanoscopy of mitochondria has been largely restricted to two-dimensional (2D) single-color recordings of cancer cells. Here, by conjugation of cyclooctatetraene (COT) to a benzo-fused cyanine dye, we report a mitochondrial inner membrane (IM) fluorescent marker, PK Mito Orange (PKMO), featuring efficient STED at 775 nm, strong photostability, and markedly reduced phototoxicity. PKMO enables super-resolution (SR) recordings of IM dynamics for extended periods in immortalized mammalian cell lines, primary cells, and organoids. Photostability and reduced phototoxicity of PKMO open the door to live-cell three-dimensional (3D) STED nanoscopy of mitochondria for 3D analysis of the convoluted IM. PKMO is optically orthogonal with green and far-red markers, allowing multiplexed recordings of mitochondria using commercial STED microscopes. Using multi-color STED microscopy, we demonstrate that imaging with PKMO can capture interactions of mitochondria with different cellular components such as the endoplasmic reticulum (ER) or the cytoskeleton, Bcl-2-associated X protein (BAX)-induced apoptotic process, or crista phenotypes in genetically modified cells, all at sub-100 nm resolution. Thereby, this work offers a versatile tool for studying mitochondrial IM architecture and dynamics in a multiplexed manner.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Humanos , Animales , Células HeLa , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Mamíferos
15.
Nat Methods ; 19(9): 1072-1075, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36050490

RESUMEN

MINimal fluorescence photon FLUXes (MINFLUX) nanoscopy, providing photon-efficient fluorophore localizations, has brought about three-dimensional resolution at nanometer scales. However, by using an intrinsic on-off switching process for single fluorophore separation, initial MINFLUX implementations have been limited to two color channels. Here we show that MINFLUX can be effectively combined with sequentially multiplexed DNA-based labeling (DNA-PAINT), expanding MINFLUX nanoscopy to multiple molecular targets. Our method is exemplified with three-color recordings of mitochondria in human cells.


Asunto(s)
ADN , Colorantes Fluorescentes , Humanos , Microscopía Fluorescente/métodos , Mitocondrias , Fotones
16.
EMBO Rep ; 23(11): e54746, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36156348

RESUMEN

Melanoma is the deadliest of skin cancers and has a high tendency to metastasize to distant organs. Calcium and metabolic signals contribute to melanoma invasiveness; however, the underlying molecular details are elusive. The MCU complex is a major route for calcium into the mitochondrial matrix but whether MCU affects melanoma pathobiology was not understood. Here, we show that MCUA expression correlates with melanoma patient survival and is decreased in BRAF kinase inhibitor-resistant melanomas. Knockdown (KD) of MCUA suppresses melanoma cell growth and stimulates migration and invasion. In melanoma xenografts, MCUA_KD reduces tumor volumes but promotes lung metastases. Proteomic analyses and protein microarrays identify pathways that link MCUA and melanoma cell phenotype and suggest a major role for redox regulation. Antioxidants enhance melanoma cell migration, while prooxidants diminish the MCUA_KD -induced invasive phenotype. Furthermore, MCUA_KD increases melanoma cell resistance to immunotherapies and ferroptosis. Collectively, we demonstrate that MCUA controls melanoma aggressive behavior and therapeutic sensitivity. Manipulations of mitochondrial calcium and redox homeostasis, in combination with current therapies, should be considered in treating advanced melanoma.


Asunto(s)
Calcio , Melanoma , Humanos , Calcio/metabolismo , Proteómica , Melanoma/genética , Melanoma/metabolismo , Oxidación-Reducción , Fenotipo , Línea Celular Tumoral
17.
Chemphyschem ; 23(19): e202200192, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35959919

RESUMEN

Reversibly photoswitchable fluorescent proteins are essential markers for advanced biological imaging, and optimization of their photophysical properties underlies improved performance and novel applications. Here we establish a link between photoswitching contrast, one of the key parameters that dictate the achievable resolution in nanoscopy applications, and chromophore conformation in the non-fluorescent state of rsEGFP2, a widely employed label in REversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy. Upon illumination, the cis chromophore of rsEGFP2 isomerizes to two distinct off-state conformations, trans1 and trans2, located on either side of the V151 side chain. Reducing or enlarging the side chain at this position (V151A and V151L variants) leads to single off-state conformations that exhibit higher and lower switching contrast, respectively, compared to the rsEGFP2 parent. The combination of structural information obtained by serial femtosecond crystallography with high-level quantum chemical calculations and with spectroscopic and photophysical data determined in vitro suggests that the changes in switching contrast arise from blue- and red-shifts of the absorption bands associated to trans1 and trans2, respectively. Thus, due to elimination of trans2, the V151A variants of rsEGFP2 and its superfolding variant rsFolder2 display a more than two-fold higher switching contrast than their respective parent proteins, both in vitro and in E. coli cells. The application of the rsFolder2-V151A variant is demonstrated in RESOLFT nanoscopy. Our study rationalizes the connection between structural and photophysical chromophore properties and suggests a means to rationally improve fluorescent proteins for nanoscopy applications.


Asunto(s)
Escherichia coli , Microscopía , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/química
18.
Sci Adv ; 8(35): eabo4946, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36044574

RESUMEN

Mitochondrial cristae membranes are the oxidative phosphorylation sites in cells. Crista junctions (CJs) form the highly curved neck regions of cristae and are thought to function as selective entry gates into the cristae space. Little is known about how CJs are generated and maintained. We show that the central coiled-coil (CC) domain of the mitochondrial contact site and cristae organizing system subunit Mic60 forms an elongated, bow tie-shaped tetrameric assembly. Mic19 promotes Mic60 tetramerization via a conserved interface between the Mic60 mitofilin and Mic19 CHCH (CC-helix-CC-helix) domains. Dimerization of mitofilin domains exposes a crescent-shaped membrane-binding site with convex curvature tailored to interact with the curved CJ neck. Our study suggests that the Mic60-Mic19 subcomplex traverses CJs as a molecular strut, thereby controlling CJ architecture and function.

20.
Nat Methods ; 19(5): 603-612, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35577958

RESUMEN

Coherent fluorescence imaging with two objective lenses (4Pi detection) enables single-molecule localization microscopy with sub-10 nm spatial resolution in three dimensions. Despite its outstanding sensitivity, wider application of this technique has been hindered by complex instrumentation and the challenging nature of the data analysis. Here we report the development of a 4Pi-STORM microscope, which obtains optimal resolution and accuracy by modeling the 4Pi point spread function (PSF) dynamically while also using a simpler optical design. Dynamic spline PSF models incorporate fluctuations in the modulation phase of the experimentally determined PSF, capturing the temporal evolution of the optical system. Our method reaches the theoretical limits for precision and minimizes phase-wrapping artifacts by making full use of the information content of the data. 4Pi-STORM achieves a near-isotropic three-dimensional localization precision of 2-3 nm, and we demonstrate its capabilities by investigating protein and nucleic acid organization in primary neurons and mammalian mitochondria.


Asunto(s)
Lentes , Imagen Individual de Molécula , Animales , Artefactos , Mamíferos , Microscopía , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA