Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(7): e4321, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763891

RESUMEN

Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies-combinations of growth, mortality and recruitment rates-of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old-growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0-30 years), late successional (30-120 years) and old-growth forests using two-dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old-growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long-term forest monitoring plots in old-growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.


Asunto(s)
Bosques , Árboles , Clima Tropical , Panamá , México , Costa Rica , Biodiversidad
2.
Nature ; 626(7999): 555-564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356065

RESUMEN

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Asunto(s)
Bosques , Calentamiento Global , Árboles , Sequías/estadística & datos numéricos , Retroalimentación , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Árboles/crecimiento & desarrollo , Incendios Forestales/estadística & datos numéricos , Incertidumbre , Restauración y Remediación Ambiental/tendencias
3.
Proc Biol Sci ; 290(1990): 20222203, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629117

RESUMEN

Abandonment of agricultural lands promotes the global expansion of secondary forests, which are critical for preserving biodiversity and ecosystem functions and services. Such roles largely depend, however, on two essential successional attributes, trajectory and recovery rate, which are expected to depend on landscape-scale forest cover in nonlinear ways. Using a multi-scale approach and a large vegetation dataset (843 plots, 3511 tree species) from 22 secondary forest chronosequences distributed across the Neotropics, we show that successional trajectories of woody plant species richness, stem density and basal area are less predictable in landscapes (4 km radius) with intermediate (40-60%) forest cover than in landscapes with high (greater than 60%) forest cover. This supports theory suggesting that high spatial and environmental heterogeneity in intermediately deforested landscapes can increase the variation of key ecological factors for forest recovery (e.g. seed dispersal and seedling recruitment), increasing the uncertainty of successional trajectories. Regarding the recovery rate, only species richness is positively related to forest cover in relatively small (1 km radius) landscapes. These findings highlight the importance of using a spatially explicit landscape approach in restoration initiatives and suggest that these initiatives can be more effective in more forested landscapes, especially if implemented across spatial extents of 1-4 km radius.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Árboles , Plantas
4.
Biol Rev Camb Philos Soc ; 98(2): 662-676, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36453621

RESUMEN

Naturally regenerating forests or secondary forests (SFs) are a promising strategy for restoring large expanses of tropical forests at low cost and with high environmental benefits. This expectation is supported by the high resilience of tropical forests after natural disturbances, yet this resilience can be severely reduced by human impacts. Assessing the characteristics of SFs and their ecological integrity (EI) is essential to evaluating their role for conservation, restoration, and provisioning of ecosystem services. In this study, we aim to propose a concept and indicators that allow the assessment and classification of the EI of SFs. To this end, we review the literature to assess how EI has been addressed in different ecosystems and which indicators of EI are most commonly used for tropical forests. Building upon this knowledge we propose a modification of the concept of EI to embrace SFs and suggest indicators of EI that can be applied to different successional stages or stand ages. Additionally, we relate these indicators to ecosystem service provision in order to support the practical application of the theory. EI is generally defined as the ability of ecosystems to support and maintain composition, structure and function similar to the reference conditions of an undisturbed ecosystem. This definition does not consider the temporal dynamics of recovering ecosystems, such as SFs. Therefore, we suggest incorporation of an optimal successional trajectory as a reference in addition to the old-growth forest reference. The optimal successional trajectory represents the maximum EI that can be attained at each successional stage in a given region and enables the evaluation of EI at any given age class. We further suggest a list of indicators, the main ones being: compositional indicators (species diversity/richness and indicator species); structural indicators (basal area, heterogeneity of basal area and canopy cover); function indicators (tree growth and mortality); and landscape proxies (landscape heterogeneity, landscape connectivity). Finally, we discuss how this approach can assist in defining the value of SF patches to provide ecosystem services, restore forests and contribute to ecosystem conservation.


Asunto(s)
Ecosistema , Bosques , Humanos , Árboles , Clima Tropical , Biodiversidad
8.
Sci Adv ; 8(26): eabn1767, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35776785

RESUMEN

Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≤20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained.

9.
Biol Rev Camb Philos Soc ; 96(4): 1114-1134, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33709566

RESUMEN

Secondary forests are increasingly important components of human-modified landscapes in the tropics. Successional pathways, however, can vary enormously across and within landscapes, with divergent regrowth rates, vegetation structure and species composition. While climatic and edaphic conditions drive variations across regions, land-use history plays a central role in driving alternative successional pathways within human-modified landscapes. How land use affects succession depends on its intensity, spatial extent, frequency, duration and management practices, and is mediated by a complex combination of mechanisms acting on different ecosystem components and at different spatial and temporal scales. We review the literature aiming to provide a comprehensive understanding of the mechanisms underlying the long-lasting effects of land use on tropical forest succession and to discuss its implications for forest restoration. We organize it following a framework based on the hierarchical model of succession and ecological filtering theory. This review shows that our knowledge is mostly derived from studies in Neotropical forests regenerating after abandonment of shifting cultivation or pasture systems. Vegetation is the ecological component assessed most often. Little is known regarding how the recovery of belowground processes and microbiota communities is affected by previous land-use history. In published studies, land-use history has been mostly characterized by type, without discrimination of intensity, extent, duration or frequency. We compile and discuss the metrics used to describe land-use history, aiming to facilitate future studies. The literature shows that (i) species availability to succession is affected by transformations in the landscape that affect dispersal, and by management practices and seed predation, which affect the composition and diversity of propagules on site. Once a species successfully reaches an abandoned field, its establishment and performance are dependent on resistance to management practices, tolerance to (modified) soil conditions, herbivory, competition with weeds and invasive species, and facilitation by remnant trees. (ii) Structural and compositional divergences at early stages of succession remain for decades, suggesting that early communities play an important role in governing further ecosystem functioning and processes during succession. Management interventions at early stages could help enhance recovery rates and manipulate successional pathways. (iii) The combination of local and landscape conditions defines the limitations to succession and therefore the potential for natural regeneration to restore ecosystem properties effectively. The knowledge summarized here could enable the identification of conditions in which natural regeneration could efficiently promote forest restoration, and where specific management practices are required to foster succession. Finally, characterization of the landscape context and previous land-use history is essential to understand the limitations to succession and therefore to define cost-effective restoration strategies. Advancing knowledge on these two aspects is key for finding generalizable relations that will increase the predictability of succession and the efficiency of forest restoration under different landscape contexts.


Asunto(s)
Ecosistema , Bosques , Humanos , Especies Introducidas , Suelo , Árboles , Clima Tropical
10.
Nature ; 586(7831): 724-729, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057198

RESUMEN

Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental/tendencias , Cooperación Internacional , Animales , Biodiversidad , Conservación de los Recursos Naturales/economía , Análisis Costo-Beneficio , Restauración y Remediación Ambiental/economía , Mapeo Geográfico , Calentamiento Global/economía , Calentamiento Global/prevención & control
11.
Sci Rep ; 9(1): 11993, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427607

RESUMEN

Most deforested lands in Brazil are occupied by low-productivity cattle ranching. Brazil is the second biggest meat producer worldwide and is projected to increase its agricultural output more than any other country. Biochar has been shown to improve soil properties and agricultural productivity when added to degraded soils, but these effects are context-dependent. The impact of biochar, fertilizer and inoculant on the productivity of forage grasses in Brazil (Brachiaria spp. and Panicum spp.) was investigated from environmental and socio-economic perspectives. We showed a 27% average increase in Brachiaria production over two years but no significant effects of amendment on Panicum yield. Biochar addition also increased the contents of macronutrients, soil pH and CEC. Each hectare amended with biochar saved 91 tonnes of CO2eq through land sparing effect, 13 tonnes of CO2eq sequestered in the soil, equating to U$455 in carbon payments. The costs of biochar production for smallholder farmers, mostly because of labour cost, outweighed the potential benefits of its use. Biochar is 617% more expensive than common fertilizers. Biochar could improve productivity of degraded pasturelands in Brazil if investments in efficient biochar production techniques are used and biochar is subsidized by low emission incentive schemes.


Asunto(s)
Carbón Orgánico , Ambiente , Suelo/química , Agricultura , Algoritmos , Biomasa , Brasil , Ciclo del Carbono , Análisis Costo-Beneficio , Ecosistema , Bosques , Modelos Teóricos
13.
PLoS One ; 12(7): e0181092, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28727828

RESUMEN

Shifting cultivation is the main land-use system transforming landscapes in riverine Amazonia. Increased concentration of the human population around villages and increasing market integration during the last decades may be causing agricultural intensification. Studies have shown that agricultural intensification, i.e. higher number of swidden-fallow cycles and shorter fallow periods, reduces crop productivity of swiddens and the regrowth capacity of fallows, undermining the resilience of the shifting cultivation system as a whole. We investigated the temporal and spatial dynamics of shifting cultivation in Brazilian Amazonia to test the hypotheses that (i) agriculture has become more intensive over time, and (ii) patterns of land-use intensity are related to land accessibility and human population density. We applied a breakpoint-detection algorithm to Landsat time-series spanning three decades (1984-2015) and retrieved the temporal dynamics of shifting cultivation fields, which go through alternating phases of crop production (swidden) and secondary forest regrowth (fallow). We found that fallow-period length has decreased from 6.4 to 5.1 years on average, and that expansion over old-growth forest has slowed down over time. Shorter fallow periods and higher frequency of slash and burn cycles are practiced closer to residences and around larger villages. Our results indicate that shifting cultivation in riverine Amazonia has gone through a process of agricultural intensification in the past three decades. The resulting landscape is predominantly covered by young secondary forests (≤ 12 yrs old), and 20% of it have gone through intensive use. Reversing this trend and avoiding the negative consequences of agricultural intensification requires land use planning that accounts for the constraints of land use in riverine areas.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Bosques , Ríos , Árboles/crecimiento & desarrollo , Brasil , Humanos
14.
Sci Adv ; 2(5): e1501639, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27386528

RESUMEN

Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.


Asunto(s)
Ciclo del Carbono , Secuestro de Carbono , Ecosistema , Bosques , Biodiversidad , Biomasa , Conservación de los Recursos Naturales , Granjas , Geografía , América Latina , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA