Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257367

RESUMEN

We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.

2.
Dalton Trans ; 52(34): 11981-11991, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37578154

RESUMEN

We have synthesized and characterized two novel lead-free organic-inorganic hybrid crystals: (S(CH3)3)3[Bi2I9] (TBI) and (S(CH3)3)3[Sb2I9] (TSI). Thermal DSC, TG, and DTA analyses indicate structural phase transitions (PTs) in both compounds; TBI undergoes two structural phase transitions at 314.2/314.8 K (cooling/heating) and at 181.5 K of first (I ↔ II) and second order (II ↔ III), respectively. The crystal structures of TBI are refined for phases I (325 K), II (200 K) and III (100 K). TBI exhibits ferroelastic properties since both PTs are accompanied by a change in the symmetry of crystals: P63/mmc → C2/c (I → II) and C2/c → P1̄ (II → III). The presence of a ferroelastic domain structure has been confirmed by optical observations. In turn, TSI also reveals two PTs: I ↔ II (at 303.9/304.1 K) and II ↔ III (212.9/221.4 K). To compare and obtain insight into the mechanism of the PTs of TBI, we have carried out temperature dependent single crystal X-ray diffraction studies. Additionally, to confirm the change in the dynamical states of molecules in PTs, dielectric measurements have been carried out between 100 K and 400 K in the frequency range of 200 Hz to 2 MHz. Moreover, the measurements of the 1H NMR spin-lattice relaxation time, T1, and a second moment, M2, of the 1H NMR line have been undertaken in the temperature range between 100 and 300 K.

3.
Molecules ; 28(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175304

RESUMEN

Hybrid organic-inorganic iodides based on Bi(III) and Sb(III) provide integrated functionalities through the combination of high dielectric constants, semiconducting properties and ferroic phases. Here, we report a pyrrolidinium-based bismuth (1) and antimony (2) iodides of (NC4H10)3[M2I9] (M: Bi(III), Sb(III)) formula which are ferroelastic at room temperature. The narrow band gaps (~2.12 eV for 1 and 2.19 eV for 2) and DOS calculations indicate the semiconducting characteristics of both materials. The crystal structure consists of discrete, face-sharing bioctahedra [M2I9]3- and disordered pyrrolidinium amines providing charge balance and acting as spacers between inorganic moieties. At room temperature, 1 and 2 accommodate orthorhombic Cmcm symmetry. 1 displays a complex temperature-induced polymorphism. It is stable up to 525 K and undergoes a sequence of low-temperature phase transitions (PTs) at 221/222 K (I ↔ II) and 189/190 K (II ↔ III) and at 131 K (IV→III), associated with the ordering of pyrrolidinium cations and resulting in Cmcm symmetry breaking. 2 undergoes only one PT at T = 215 K. The dielectric studies disclose a relaxation process in the kilohertz frequency region, assigned to the dynamics of organic cations, described well by the Cole-Cole relation. A combination of single-crystal X-ray diffraction, synchrotron powder diffraction, spin-lattice relaxation time of 1H NMR, dielectric and calorimetric studies is used to determine the structural phase diagram, cation dynamics and electric properties of (NC4H10)3[M2I9].

4.
J Phys Chem Lett ; 14(19): 4524-4531, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37159252

RESUMEN

Halobismuthates(III) and haloantimonates(III) with the R3MX6 chemical composition create a new and broadly unexplored class of ferroelectric compounds. In this paper, we report the haloantimonate(III) ferroelectric comprising an aromatic (1,2,4-triazolium) cation, i.e., (C2N3H4)3[SbBr6] (TBA). Temperature-resolved structural and spectroscopic studies indicate that TBA undergoes two solid-solid phase transitions between tetragonal [P42/m (I)] and monoclinic [P21/n (II) and P21 (III)] phases. TBA experiences a paraelectric-ferroelectric phase transition at 271/268 K (II-III) driven by "order-disorder" and "displacive" molecular mechanisms. The ferroelectric properties of phase III have been confirmed by hysteresis loop measurement, and additionally, the acentric order has been further supported by second-harmonic generation measurements. Insight into the molecular origins of the ferroelectric polarization was provided by periodic ab initio calculations using the Berry phase approach at the density functional theory (DFT-D3) method level employed for calculations of spontaneous polarization.

5.
Inorg Chem ; 61(14): 5469-5473, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35343233

RESUMEN

Organic-inorganic hybrids of halogenoindates(III) are typically represented by one of the zero-dimensional units: InX4-, InX52-, InX63-, or In2X115-. Higher dimensional anionic forms, although not forbidden, have remained almost elusive. Here we report for the first time In3+-based organic-inorganic hybrids, (C4H5N2S)2InCl5 and (C4H5N2S)2InBr5, with 1D anionic chains of trans-halide-bridged InX6 octahedra whose formation is guided by 2-mercaptopyrimidinium cations (C4H5N2S+). The chains are characterized by the significant ease of deformation, which is reflected in the elongation of the bridging bonds or the displacement of In3+ ions. The materials show a robust band gap predominantly governed by C4H5N2S+ cations. Dielectric relaxation processes in (C4H5N2S)2InBr5 arise from the cations' dynamics and suggest the ability of the brominated system to accommodate even larger cations. Our work represents a successful attempt to expand the structural diversity of halogenoindates(III) and opens a pathway to reach multifunctional 1D In3+-based hybrids.

6.
Dalton Trans ; 51(5): 1850-1860, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018903

RESUMEN

We have synthesised and characterised novel organic-inorganic hybrid crystals: (C3N2H5)3Sb2I9 and (C3N2H5)3Bi2I9 (PSI and PBI). The thermal DSC and TG analyses indicate four structural phase transitions (PTs) at 366.2/366.8, 274.6/275.4, 233.3/233.3 and 142.8/143.1 K (on cooling/heating) for PSI and two reversible PTs at 365.2/370.8 and 252.6/257.9 K for PBI. Both analogues crystallize at room temperature in the orthorhombic Cmcm structure, which transforms, in the case of PBI, to monoclinic P21/n at low temperature. According to the X-ray diffraction results, the anionic component is discrete and built of face-sharing bioctahedra, [M2I9]3-, in both compounds, whereas cations exhibit distinct dynamical disorder over high temperature phases. Dielectric spectroscopy and 1H NMR spectroscopy have been used to characterise the dynamical state of the C3N2H5+ cations. The ferroelastic domain structure has been characterised by observations under a polarized optical microscope. Both compounds are semiconductors with narrow bandgaps of 1.97 eV (PBI) and 2.10 eV (PSI).

7.
RSC Adv ; 11(29): 17574-17586, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480207

RESUMEN

In halogenoantimonate(iii) and halogenobismuthate(iii) organic-inorganic hybrids, chains of trans-connected octahedra, trans-[MX5]∞, are considered attractive anionic structures for inducing ferroelectricity. The latter is realized by displacing the bridging halogen atoms along the chain direction - the process that changes the polarity of the whole unit. Advances in the identification of such materials have been hindered, however, by substantial difficulty in obtaining such structures. Here we investigate structural and dielectric properties of three families of compounds based on 2-mercaptopyrimidinium, 2-aminopyrimidinium, and 2-amino-4-methylpyrimidinium cations in which 8 out of 12 compounds show trans-[MX5]∞ chains in their crystal structures. Two of the compounds adopt a polar P21 space group and are potentially ferroelectric. We perform a detailed structural analysis of all compounds with trans-[MX5]∞ chains discovered by far to understand the factors that lead to the chains' formation. We reveal that the size of a cation predominantly defines the accessibility of structures with this anionic form and we provide rules for designing hybrids with trans-[MX5]∞ chains to help guide future efforts to engineer materials with interesting non-linear electrical properties.

8.
Inorg Chem ; 59(17): 11986-11994, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32799526

RESUMEN

The preparation of materials featuring more than one ferroelectric phase represents a promising strategy for controlling electrical properties arising from spontaneous polarization, since it offers an added advantage of temperature-dependent toggling between two different ferroelectric states. Here, we report on the discovery of a unique ferroelectric-ferroelectric transition in diisopropylammonium tetrabromocadmate (DPAC, (C6H16N)2[CdBr4]) with a Tc value of 244 K, which is continuous in nature. Both phases crystallize in the same polar orthorhombic space group, Iab2. The temperature-resolved second-harmonic-generation (SHG) measurements using 800 nm femtosecond laser pulses attest to the polar structure of DPAC on either side of the phase transition (PT). The dc conductivity parameters were estimated in both solid phases. The anionic substructure is in the form of [CdBr4]2- discrete complexes (0D), while in the voids of the structure, the diisopropylammonium cations are embedded. The ferroelectric properties of phases I and II have been confirmed by the reversible pyroelectric effect as well as by P-E loop investigations. On the basis of the dielectric responses, the molecular mechanism of the PT at 244 K has been postulated to be of mixed type with an indication of its displacive nature.

9.
Inorg Chem ; 59(6): 3417-3427, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-31880151

RESUMEN

The (C2H5NH3)2[BiBr5] (EBB) crystals adopt the one-dimensional (1D) polymeric anionic form [BiBr5]∞2-, which is preferred by halobismuthates(III) exhibiting polar properties and realized in R2MX5 stoichiometry. Differential scanning calorimetry and dilatometric measurements reveal reversible structural phase transitions: at 160 K (phase I → phase II) and 120 K (phase II → phase III). The resolved crystal structures of EBB show the centrosymmetric space group in phase I (Aeam), polar (Pca21) in phase II, and polar (Aea2) in phase III. The presence of dielectric hysteresis loops in phases II and III evidence ferroelectric properties. The dielectric response [ε*(ω,T)] of EBB close to 160 K is characteristic of ferroelectrics with a critical slowing down process. The molecular mechanism of a paraelectric-ferroelectric phase transition at 160 K is explained as "order-disorder" (assigned to the dynamics of the ethylammonium cations) and dominating "displacive" (related to strong distortion of the 1D anionic network). The optical band gap obtained from UV-vis measurements is about 2.6 eV. The conduction band minimum is formed by the hybridized Bi 6p and Br 4p states. An analysis of the CSD results for haloantimonates(III) and halobismuthates(III) ferroelectrics characterized by [MX4]-, [M2X9]3-, [MX5]2-, and [M2X11]5- anions is given.

10.
Dalton Trans ; 47(38): 13507-13522, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30191230

RESUMEN

A description of the thermal, structural, 1H NMR, electric and optical properties of four organic-inorganic hybrids, haloantimonates(iii) and halobismuthates(iii), based on homopiperidinium cation: (C6H14N)2SbCl5 (abbrev. HSC), (C6H14N)2SbBr5 (HSB), (C6H14N)2BiCl6[H3O] (HBC), (C6H14N)2BiBr5 (HBB), is presented. The common feature of the crystal structures of the studied compounds is the 1D (one-dimensional) chain for the anionic network in HSC, HSB and HBB, 1D hydrogen bond chain between 0D (zero-dimensional, isolated) BiCl6 octahedrons and hydronium moieties in HBC as well as a rich polymorphism in the solid state for all title compounds. The structures of the Sb(iii) and Bi(iii) derivatives are not isomorphous and they crystallize in the following space groups: HSC in P212121 both at 280 and 150 K, HSB in Pmna and P212121 at 310 and 150 K, respectively, HBC in C2/m, C2/m and C2/c at 300, 260 and 200 K, respectively, and HBB in P21/n both at 280 and 200 K. The anionic networks are in the forms of either pseudo- and zig-zag chains or a chain of a hydrogen bond. The band gap values, using the Tauc plot as well as the ac and dc conductivity parameters, were estimated. On the basis of the 1H NMR spin-lattice relaxation times, T1, and second-moment, M2, measurements and the dielectric responses, the molecular mechanisms of the phase transitions (PTs) have been postulated. The structural PTs are discussed in terms of the changes in cationic dynamics and distortions of the anionic sublattice. The powder technique of SHG (Kurtz and Perry method) has been used to analyze the second-order nonlinear optical properties of HSC.

11.
Nat Commun ; 7: 13108, 2016 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-27734829

RESUMEN

Flexible organic materials possessing useful electrical properties, such as ferroelectricity, are of crucial importance in the engineering of electronic devices. Up until now, however, only ferroelectric polymers have intrinsically met this flexibility requirement, leaving small-molecule organic ferroelectrics with room for improvement. Since both flexibility and ferroelectricity are rare properties on their own, combining them in one crystalline organic material is challenging. Herein, we report that trisubstituted haloimidazoles not only display ferroelectricity and piezoelectricity-the properties that originate from their non-centrosymmetric crystal lattice-but also lend their crystalline mechanical properties to fine-tuning in a controllable manner by disrupting the weak halogen bonds between the molecules. This element of control makes it possible to deliver another unique and highly desirable property, namely crystal flexibility. Moreover, the electrical properties are maintained in the flexible crystals.

12.
Chemphyschem ; 17(15): 2329-39, 2016 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-27264005

RESUMEN

(1) H NMR relaxometry was used to reveal information on the dynamical properties of the molecular crystal (PyH)5 Bi2 Br11 (PyH=C5 H6 N, pyridinium cation), chosen as an example of a solid that exhibits a complex structure and rotational-like dynamics. Experimental studies were performed over a very broad frequency range, from 4 kHz to 40 MHz (referring to the (1) H resonance frequency) versus temperature. The extensive set of data was thoroughly analyzed in terms of two motional models differing with respect to the assumed mechanism (heterogeneous versus homogenous) of the motion of the PyH cations. A Cole-Davidson distribution of the correlation times describing the assumed motional heterogeneity was tested against a concept of two correlation times characterizing the rotation-like dynamics of the PyH cation around the perpendicular axes differing by about one order of magnitude. The parameters describing the dynamics of the cation, obtained by means of both models, were compared and discussed.

13.
J Phys Chem A ; 120(12): 2014-21, 2016 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-26959833

RESUMEN

(C3N2H5)2[CoCl4] (ICC) was characterized in a wide temperature range by the single-crystal X-ray diffraction method. Differential scanning calorimetry revealed two structural phase transitions: continuous at 245.5 K (from phase I to II) and a discontinuous one at 234/237 K (cooling/heating) (II → III). ICC adopts monoclinic space groups C2/c and P21/c in phase (I) and (III), respectively. The intermediate phase (II) appears to be incommensurately modulated. Dynamic properties of polycrystalline ICC were studied by means of dielectric spectroscopy and proton magnetic resonance ((1)H NMR). The presence of a low frequency dielectric relaxation process in phase III reflects libration motion of the imidazolium cations. The temperature dependence of the (1)H spin-lattice relaxation time indicated two motional processes with similar activation energies that are by about an order of magnitude smaller than the activation energy obtained from dielectric studies. There are no abrupt changes in the (1)H relaxation time at the phase transitions indicating that the dynamics of the imidazolium rings gradually varies with temperature; that is, it does not change suddenly at the phase transition. Negative values of the Weiss constant and the intermolecular exchange parameter were obtained, confirming the presence of a weak antiferromagnetic interaction between the nearest cobalt centers. Moreover, the magnitude of zero field splitting was determined. The AC susceptibility measurements show that a slow magnetic relaxation is induced by small external magnetic field.

14.
Adv Mater ; 27(34): 5023-7, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26192617

RESUMEN

Diisobutylammonium bromide is found to be a unique improper ferroelastic in which the elastic degrees of freedom seem to play the essential role, giving rise to a domain pattern resembling that of martensitic phase transitions. A weak canted ferroelectricity turns out switchable by an electric field.

15.
Dalton Trans ; 42(42): 15069-79, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23999763

RESUMEN

Three new organic-inorganic hybrids based on halogenoantimonates(III) and halogenobismuthates(III) with the morpholinium cation, [NH2(C2H4)2O]SbCl4, [NH2(C2H4)2O]SbBr4 and [NH2(C2H4)2O]BiBr4, have been prepared and characterized with DSC, TGA, DTA and single-crystal X-ray diffraction. The common feature of the crystal structures of the studied compounds is the presence of polyanionic ([MX4]∞(-)) and morpholinium (head-to-tail configuration) chains, which expand themselves parallel to each other. The antimonate derivatives are isomorphous, crystallizing in a centrosymmetric orthorhombic Pbca space group and show no phase transitions (PTs) between 110 and 370 K. On the other hand, [NH2(C2H4)2O]BiBr4 undergoes two first-order structural PTs: I ↔ II at 321/343 K (cooling/heating) and II ↔ III at 285/289 K (cooling/heating). The mechanism of the PTs is discussed on the basis of crystallographic data and (1)H NMR and infrared spectroscopy. The PT at 343 K is accompanied by a spectacular switching of the spin-lattice T1 relaxation pathway. Structural parameters analysis has been performed to discuss a structure-properties relationship.

16.
Dalton Trans ; 41(24): 7285-94, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22572794

RESUMEN

This paper presents the structural features of ionic complexes formed by morpholine and metal ions which belong to group VA, namely Sb(III) and Bi(III). A series of target inorganic-organic hybrid compounds of the general formula [NH(2)(C(2)H(4))(2)O](2)MX(5) (where M = Sb, Bi; X = Cl, Br) has been synthesized by incorporating the organic component (morpholine) into the highly polarizable one-dimensional halogenoantimonate(III)/halogenobismuthate(III) chain network. Among the studied compounds, four were found to crystallize in the room temperature phase in the piezoelectric, orthorhombic space group P2(1)2(1)2(1), Z = 4, the feature being confirmed by the powder second harmonic generation of light and piezoelectric measurements. Dielectric dispersion studies between 200 Hz and 2 MHz disclosed a relaxation process below room temperature well described by the Cole-Cole equation. Based on crystal structures available in Cambridge Structural Database (version 5.32, November 2010) we attempt to show a relationship between the acentric symmetry of compounds and the type of anionic network within the R(2)MX(5)-subgroup (where R denotes organic cation) of halogenoantimonates(III) and halogenobismuthates(III).

17.
Acta Crystallogr B ; 64(Pt 5): 558-66, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18799843

RESUMEN

[(CH(3))(3)PH](3)[Sb(2)Cl(9)] experiences four phase transitions which were found by means of calorimetry, thermogravimetry and X-ray diffraction. The crystal structure was solved in the space group P6(3)/mmc at 382 K (phase I), Pnam at 295 K (phase II) and Pna2(1) at 175 K (phase V). We observed an unusual increase in symmetry from the monoclinic to the orthorhombic form at the IV --> V transition. The parent hexagonal high-temperature phase I consists of highly disordered [(CH(3))(3)PH](+) cations and [Sb(2)Cl(9)](3-) anions with an octahedral environment of Sb(III). The transition from phases I to II is associated with the ordering of [(CH(3))(3)PH](+) cations. Moreover, the successive transformations from phases I to V are related to the change in the arrangement of Cl atoms in [Sb(2)Cl(9)](3-) anions from the discrete 'face-sharing bioctahedra' (phase I) to two corner-sharing square pyramids. A mechanism for the phase transitions is proposed. It is observed that weak C-H...Cl interactions are responsible for the structure arrangement in low-temperature phases.

18.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 4): o667, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-21202061

RESUMEN

The crystal structure of the low-temperature form of the title compound, C(4)H(10)NO(+)·BF(4) (-), was determined at 80 K. Two reversible phase transitions, at 158/158 and 124/126 K (heating/cooling), were detected by differential scanning calorimetry for this compound, and the sequence of phase transitions was subsequently confirmed by single-crystal X-ray diffraction experiments. The asymmetric unit at 80 K consists of three BF(4) (-) tetra-hedral anions and three morpholinium cations (Z' = 3). Hydrogen-bonded morpholinium cations form chains along the [100] direction. The BF(4) (-) anions are connected to these chains by N-H⋯F hydrogen bonds. In the crystal structure, two different layers perpendicular to the [001] direction can be distinguished, which differ in the geometry of the hydrogen bonds between cationic and anionic species.

19.
Solid State Nucl Magn Reson ; 21(1-2): 44-52, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-11949816

RESUMEN

A T1 minimum at 216 K for Larmor frequency 90 MHz has been detected and for this minimum no analogous T, minimum according to the known quadratic dependence of the Larmor frequency 25 MHz is found. The analysis leads to the conclusion that this T1 minimum is a result of the relaxation of protons via quadrupole nuclei. The Kimmich theoretical treatment of 1H NMR experiments exhibiting the existence of this phenomenon in the case of relaxation of protons of piridinium cations in (C5H5NH)5Bi2Br11 and the estimated averaged quadrupole frequency of interacting quadrupole nuclei has been estimated to be around 71 MHz. Below the phase transition at 118 K a wide symmetric spin-lattice relaxation minimum at 25 MHz is detected and a model of small angle libration of the pyridinium cation has been applied to explain the observed T1 relaxation time minimum.


Asunto(s)
Espectroscopía de Resonancia Magnética , Compuestos de Piridinio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...