Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; 25(7): e202300827, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38349283

RESUMEN

We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3-kinase PI3K-protein kinase B (AKT) pathway in cells expressing mutant KRAS. Most inhibit intrinsic and/or SOS-mediated KRAS activation while others inhibit RAS-effector interaction. We propose these compounds as starting points for the development of non-covalent allosteric KRAS inhibitors.


Asunto(s)
Antineoplásicos , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Línea Celular Tumoral , Transducción de Señal , Antineoplásicos/farmacología
2.
ACS Bio Med Chem Au ; 2(6): 617-626, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37101428

RESUMEN

We describe a small molecule ligand ACA-14 (2-hydroxy-5-{[(2-phenylcyclopropyl) carbonyl] amino} benzoic acid) as an initial lead for the development of direct inhibitors of KRAS, a notoriously difficult anticancer drug target. We show that the compound binds to KRAS near the switch regions with affinities in the low micromolar range and exerts different effects on KRAS interactions with binding partners. Specifically, ACA-14 impedes the interaction of KRAS with its effector Raf and reduces both intrinsic and SOS-mediated nucleotide exchange rates. Likely as a result of these effects, ACA-14 inhibits signal transduction through the MAPK pathway in cells expressing mutant KRAS and inhibits the growth of pancreatic and colon cancer cells harboring mutant KRAS. We thus propose compound ACA-14 as a useful initial lead for the development of broad-acting inhibitors that target multiple KRAS mutants and simultaneously deplete the fraction of GTP-loaded KRAS while abrogating the effector-binding ability of the already GTP-loaded fraction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA