Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Intern Emerg Med ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971910

RESUMEN

Autophagy is an evolutionarily conserved process that plays a pivotal role in the maintenance of cellular homeostasis and its impairment has been implicated in the pathogenesis of various metabolic diseases including obesity, type 2 diabetes (T2D), and metabolic dysfunction-associated steatotic liver disease (MASLD). This review synthesizes the current evidence from human studies on autophagy alterations under these metabolic conditions. In obesity, most data point to autophagy upregulation during the initiation phase of autophagosome formation, potentially in response to proinflammatory conditions in the adipose tissue. Autophagosome formation appears to be enhanced under hyperglycemic or insulin-resistant conditions in patients with T2D, possibly acting as a compensatory mechanism to eliminate damaged organelles and proteins. Other studies have proposed that prolonged hyperglycemia and disrupted insulin signaling hinder autophagic flux, resulting in the accumulation of dysfunctional cellular components that can contribute to ß-cell dysfunction. Evidence from patients with MASLD supports autophagy inhibition in disease progression. Nevertheless, given the available data, it is difficult to ascertain whether autophagy is enhanced or suppressed in these conditions because the levels of autophagy markers depend on the overall metabolism of specific organs, tissues, experimental conditions, or disease duration. Owing to these constraints, determining whether the observed shifts in autophagic activity precede or result from metabolic diseases remains challenging. Additionally, autophagy-modulating strategies are shortly discussed. To conclude, more studies investigating autophagy impairment are required to gain a more comprehensive understanding of its role in the pathogenesis of obesity, T2D, and MASLD and to unveil novel therapeutic strategies for these conditions.

2.
Int J Mol Sci ; 25(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39063068

RESUMEN

Oxidative stress has been known about in biological sciences for several decades; however, the understanding of this concept has evolved greatly since its foundation. Over the past years, reactive oxygen species, once viewed as solely deleterious, have become recognized as intrinsic components of life. In contrast, antioxidants, initially believed to be cure-all remedies, have failed to prove their efficacy in clinical trials. Fortunately, research on the health-promoting properties of antioxidants has been ongoing. Subsequent years showed that the former assumption that all antioxidants acted similarly was greatly oversimplified. Redox-active compounds differ in their chemical structures, electrochemical properties, mechanisms of action, and bioavailability; therefore, their efficacy in protecting against oxidative stress also varies. In this review, we discuss the changing perception of oxidative stress and its sources, emphasizing everyday-life exposures, particularly those of dietary origin. Finally, we posit that a better understanding of the physicochemical properties and biological outcomes of antioxidants is crucial to fully utilize their beneficial impact on health.


Asunto(s)
Antioxidantes , Homeostasis , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Antioxidantes/metabolismo , Antioxidantes/química , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Oxidantes/metabolismo , Oxidantes/química
3.
Eur J Clin Invest ; 54(7): e14217, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38644687

RESUMEN

OBJECTIVES AND SCOPE: Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS: The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY: In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.


Asunto(s)
Metabolismo Energético , Enfermedades Mitocondriales , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Humanos , Estrés Oxidativo/fisiología , Enfermedades Mitocondriales/fisiopatología , Enfermedades Mitocondriales/metabolismo , Enfermedades Neuroinflamatorias/fisiopatología , Enfermedades Neuroinflamatorias/metabolismo , Animales , Metabolismo Energético/fisiología , Fosforilación Oxidativa , Ratones , Mitocondrias/metabolismo , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/genética , Enfermedad de Leigh/fisiopatología , Síndrome MELAS/metabolismo , Síndrome MELAS/fisiopatología , Síndrome MELAS/genética , Modelos Animales de Enfermedad
4.
FASEB J ; 38(3): e23466, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318780

RESUMEN

Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.


Asunto(s)
Hígado Graso , Enfermedades Metabólicas , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Antioxidantes , Cromatografía Liquida , Espectrometría de Masas en Tándem , Estrés Oxidativo , Modelos Animales
5.
Free Radic Biol Med ; 209(Pt 2): 239-251, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37866756

RESUMEN

The term 'vitamin C' describes a group of compounds with antiscorbutic activity of l-ascorbic acid (AA). Despite AA's omnipresence in plant-derived foods, its derivatives have also been successfully implemented in the food industry as antioxidants, including the D-isomers, which lack vitamin C activity. This study aimed to determine the relationship between redox-related activities for five derivatives of AA using electrochemical, chemical, and biological approaches. Here we report that AA, C-vitamers, and other commonly consumed AA derivatives differ in their redox-related activities. As long as the physiological range of concentrations was maintained, there was no simple relationship between their redox properties and biological activity. Clear distinctions in antioxidant activity were observed mostly at high concentrations, which were strongly correlated with electrochemical and kinetic parameters describing redox-related properties of the studied compounds. Despite obvious similarities in chemical structures and antioxidant activity, we showed that C-vitamers may exhibit different nutrigenomic effects. Together, our findings provide a deeper insight into so far underinvestigated area combining chemical properties with biological activities of commonly applied AA derivatives.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Antioxidantes/farmacología , Nutrigenómica , Vitaminas , Cinética
6.
Int J Biochem Cell Biol ; 158: 106396, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36918141

RESUMEN

Cancer continues to be a leading cause of death worldwide, making the development of new treatment methods crucial in the fight against it. With cancer incidence rates increasing worldwide, ongoing research must focus on identifying new and effective ways to prevent and treat the disease. The combination of herbal extracts with chemotherapeutic agents has gained much interest as a novel strategy to combat cancer. Rumex obtusifolius L. is a wild plant known for its medicinal properties and is widely distributed worldwide. Our preclinical evaluations suggested that R. obtusifolius seed extracts possessed cancer-inhibiting properties and we also evaluated the beneficial effects of the arginase inhibitor NG-hydroxy-nor-L-arginine and nitric oxide inhibitor NG-nitro-L-arginine methyl ester in the treatment of breast cancer. The current study aimed to combine these observations and evaluate the antioxidant and antitumor properties of R. obtusifolius extracts alone and in combination with the arginase and nitric oxide synthase inhibitors. Metabolic characterization of the plant extract using a liquid chromatography/high-resolution mass spectrometry advanced system revealed the presence of 240 phenolic compounds many of which possess anticancer properties, according to the literature. In vitro studies revealed a significant cytotoxic effect of the R. obtusifolius extracts on the human colon (HT29) and breast cancer (MCF-7) cell lines. Thus, a new treatment approach of combining R. obtusifolius bioactive phytochemicals with the arginase and nitric oxide synthase inhibitors NG-nitro-L-arginine methyl ester and/or NG-hydroxy-nor-L-arginine, respectively, was proposed and could potentially be an effective way to treat breast cancer. Indeed, these combinations showed immunostimulatory, antiproliferative, antioxidant, anti-inflammatory, and antiangiogenic properties in a rat breast cancer model.


Asunto(s)
Neoplasias de la Mama , Rumex , Ratas , Humanos , Animales , Femenino , NG-Nitroarginina Metil Éster/metabolismo , Rumex/química , Rumex/metabolismo , Arginasa/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Regulación hacia Abajo , Arginina/metabolismo , Estrés Oxidativo , Óxido Nítrico/metabolismo , Inflamación/tratamiento farmacológico , Óxido Nítrico Sintasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Poliaminas
7.
Antioxidants (Basel) ; 12(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36979004

RESUMEN

The role of catechins in the epigenetic regulation of gene expression has been widely studied; however, if and how this phenomenon relates to the redox properties of these polyphenols remains unknown. Our earlier study demonstrated that exposure of the human colon adenocarcinoma HT29 cell line to these antioxidants affects the expression of redox-related genes. In particular, treatment with (-)-epigallocatechin (EGC) downregulated transcription of gene encoding sulfiredoxin-1 (SRXN1), the peroxidase involved in the protection of cells against hydrogen peroxide-induced oxidative stress. The aim of this study was to investigate whether the observed SRXN1 downregulation was accompanied by changes in the DNA methylation level of its promoter and, if so, whether it was correlated with the redox properties of catechins. The impact on DNA methylation profile in HT29 cells treated with different concentrations of five catechins, varying in chemical structures and standard reduction potentials as well as susceptibility to oxidation, was monitored by a methylation-sensitive high-resolution melting technique employing the SRXN1 promoter region as a model target. We demonstrated that catechins, indeed, are able to modulate DNA methylation of the SRXN1 gene in a redox-related manner. The nonlinear method in the statistical analysis made it possible to fish out two parameters (charge transfer in oxidation process Qox and time of electron transfer t), whose strong interactions correlated with observed modulation of DNA methylation by catechins. Based on these findings, we present a proof-of-concept that DNA methylation, which limits SRXN1 expression and thus restricts the multidirectional antioxidant action of SRXN1, may represent a mechanism protecting cells against reductive stress caused by particularly fast-reacting reductants such as EGC and (-)-epicatechin gallate (ECG) in our study.

8.
Antioxidants (Basel) ; 11(12)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36552611

RESUMEN

The concept of oxidative stress as a condition underlying a multitude of human diseases has led to immense interest in the search for antioxidant-based remedies. The simple and intuitive story of "the bad" reactive oxygen species (ROS) and "the good" antioxidants quickly (and unsurprisingly) lead to the commercial success of products tagged "beneficial to health" based solely on the presence of antioxidants. The commercial success of antioxidants by far preceded the research aimed at understanding the exact redox-related mechanisms that are in control of shaping the states of health and disease. This review describes the redox network formed by the interplay of ROS with cellular molecules and the resulting regulation of processes at the genomic and proteomic levels. Key players of this network are presented, both involved in redox signalling and control of cellular metabolism linked to most, if not all, physiological processes. In particular, this review focuses on the concept of reductive stress, which still remains less well-established compared to oxidative stress.

9.
Front Pharmacol ; 12: 670167, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924998

RESUMEN

In spite of the current advances and achievements in cancer treatments, colorectal cancer (CRC) persists as one of the most prevalent and deadly tumor types in both men and women worldwide. Drug resistance, adverse side effects and high rate of angiogenesis, metastasis and tumor relapse remain one of the greatest challenges in long-term management of CRC and urges need for new leads of anticancer drugs. We demonstrate that CRC treatment with the phytopharmaceutical mangiferin (MGF), a glucosylxanthone present in Mango tree stem bark and leaves (Mangifera Indica L.), induces dose-dependent tumor regression and decreases lung metastasis in a syngeneic immunocompetent allograft mouse model of murine CT26 colon carcinoma, which increases overall survival of mice. Antimetastatic and antiangiogenic MGF effects could be further validated in a wound healing in vitro model in human HT29 cells and in a matrigel plug implant mouse model. Interestingly, transcriptome pathway enrichment analysis demonstrates that MGF inhibits tumor growth, metastasis and angiogenesis by multi-targeting of mitochondrial oxidoreductase and fatty acid ß-oxidation metabolism, PPAR, SIRT, NFκB, Stat3, HIF, Wnt and GP6 signaling pathways. MGF effects on fatty acid ß-oxidation metabolism and carnitine palmitoyltransferase 1 (CPT1) protein expression could be further confirmed in vitro in human HT29 colon cells. In conclusion, antitumor, antiangiogenic and antimetastatic effects of MGF treatment hold promise to reduce adverse toxicity and to mitigate therapeutic outcome of colorectal cancer treatment by targeting mitochondrial energy metabolism in the tumor microenvironment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA