Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 30(9): 2151-2166, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596441

RESUMEN

The centrosome assembles a bipolar spindle for faithful chromosome segregation during mitosis. To prevent the inheritance of DNA damage, the DNA damage response (DDR) triggers programmed spindle multipolarity and concomitant death in mitosis through a poorly understood mechanism. We identified hornerin, which forms a complex with checkpoint kinase 1 (Chk1) and polo-like kinase 1 (Plk1) to mediate phosphorylation at the polo-box domain (PBD) of Plk1, as the link between the DDR and death in mitosis. We demonstrate that hornerin mediates DDR-induced precocious centriole disengagement through a dichotomous mechanism that includes sequestration of Sgo1 and Plk1 in the cytoplasm through phosphorylation of the PBD in Plk1 by Chk1. Phosphorylation of the PBD in Plk1 abolishes the interaction with Sgo1 and phosphorylation-dependent Sgo1 translocation to the centrosome, leading to precocious centriole disengagement and spindle multipolarity. Mechanistically, hornerin traps phosphorylated Plk1 in the cytoplasm. Furthermore, PBD phosphorylation inactivates Plk1 and disrupts Cep192::Aurora A::Plk1 complex translocation to the centrosome and concurrent centrosome maturation. Remarkably, hornerin depletion leads to chemoresistance against DNA damaging agents by attenuating DDR-induced death in mitosis. These results reveal how the DDR eradicates mitotic cells harboring DNA damage to ensure genome integrity during cell division.


Asunto(s)
Centrosoma , Mitosis , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Fosforilación , Quinasa Tipo Polo 1
2.
Proc Natl Acad Sci U S A ; 120(28): e2301007120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399371

RESUMEN

Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.


Asunto(s)
Glucosiltransferasas , Lentinula , Metabolómica , Metabolómica/métodos , Lentinula/enzimología , Glucosiltransferasas/química , Glucosiltransferasas/aislamiento & purificación , Glucosiltransferasas/metabolismo , Fitoquímicos/metabolismo , Xilosa/metabolismo , Genoma Fúngico , Cromatografía Líquida con Espectrometría de Masas
3.
Stem Cell Rev Rep ; 19(5): 1466-1481, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36862329

RESUMEN

BACKGROUND: Despite highly effective machinery for the maintenance of genome integrity in human embryonic stem cells (hESCs), the frequency of genetic aberrations during in-vitro culture has been a serious issue for future clinical applications. METHOD: By passaging hESCs over a broad range of timepoints (up to 6 years), the isogenic hESC lines with different passage numbers with distinct cellular characteristics, were established. RESULT: We found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs) with normal copy number. Through high-resolution genome-wide approaches and transcriptome analysis, we found that culture adapted-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2, a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stabilization, misaligned chromosomes, and polyploidy. CONCLUSION: These studies suggest that the increased transcription of TPX2 in culture adapted hESCs could contribute to an increase in aberrant mitosis due to altered spindle dynamics.


Asunto(s)
Células Madre Embrionarias Humanas , Humanos , Células Madre Embrionarias Humanas/metabolismo , Mitosis/genética , Proteínas de Ciclo Celular/genética , Ciclo Celular , Poliploidía , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo
4.
J Ginseng Res ; 46(3): 481-488, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35600766

RESUMEN

Background: Although the tumor-suppressive effects of ginsenosides in cell cycle have been well established, their pharmacological properties in mitosis have not been clarified yet. The chromosomal instability resulting from dysregulated mitotic processes is usually increased in cancer. In this study, we aimed to investigate the anticancer effects of ginsenoside Rg1 on mitotic progression in cancer. Materials and methods: Cancer cells were treated with ginsenoside Rg1 and their morphology and intensity of different protein were analyzed using immunofluorescence microscopy. The level of proteins in chromosomes was compared through chromosomal fractionation and Western blot analyses. The location and intensity of proteins in the chromosome were confirmed through immunostaining of mitotic chromosome after spreading. The colony formation assays were conducted using various cancer cell lines. Results: Ginsenoside Rg1 reduced cancer cell proliferation in some cancers through inducing mitotic arrest. Mechanistically, it inhibits the phosphorylation of histone H3 Thr3 (H3T3ph) mediated by Haspin kinase and concomitant recruitment of chromosomal passenger complex (CPC) to the centromere. Depletion of Aurora B at the centromere led to abnormal centromere integrity and spindle dynamics, thereby causing mitotic defects, such as increase in the width of the metaphase plate and spindle instability, resulting in delayed mitotic progression and cancer cell proliferation. Conclusion: Ginsenoside Rg1 reduces the level of Aurora B at the centromere via perturbing Haspin kinase activity and concurrent H3T3ph. Therefore, ginsenoside Rg1 suppresses cancer cell proliferation through impeding mitotic processes, such as chromosome alignment and spindle dynamics, upon depletion of Aurora B from the centromere.

5.
Cell Mol Life Sci ; 78(6): 2821-2838, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33067654

RESUMEN

Dramatic cellular reorganization in mitosis critically depends on the timely and temporal phosphorylation of a broad range of proteins, which is mediated by the activation of the mitotic kinases and repression of counteracting phosphatases. The mitosis-to-interphase transition, which is termed mitotic exit, involves the removal of mitotic phosphorylation by protein phosphatases. Although protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) drive this reversal in animal cells, the phosphatase network associated with ordered bulk dephosphorylation in mitotic exit is not fully understood. Here, we describe a new mitotic phosphatase relay in which Wip1/PPM1D phosphatase activity is essential for chromosomal passenger complex (CPC) translocation to the anaphase central spindle after release from the chromosome via PP1-mediated dephosphorylation of histone H3T3. Depletion of endogenous Wip1 and overexpression of the phosphatase-dead mutant disturbed CPC translocation to the central spindle, leading to failure of cytokinesis. While Wip1 was degraded in early mitosis, its levels recovered in anaphase and the protein functioned as a Cdk1-counteracting phosphatase at the anaphase central spindle and midbody. Mechanistically, Wip1 dephosphorylated Thr-59 in inner centromere protein (INCENP), which, subsequently bound to MKLP2 and recruited other components to the central spindle. Furthermore, Wip1 overexpression is associated with the overall survival rate of patients with breast cancer, suggesting that Wip1 not only functions as a weak oncogene in the DNA damage network but also as a tumor suppressor in mitotic exit. Altogether, our findings reveal that sequential dephosphorylation of mitotic phosphatases provides spatiotemporal regulation of mitotic exit to prevent tumor initiation and progression.


Asunto(s)
Cromosomas/metabolismo , Mitosis , Proteína Fosfatasa 2C/metabolismo , Huso Acromático/metabolismo , Anafase , Aurora Quinasa B/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/genética , Daño del ADN , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Cinesinas/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2C/antagonistas & inhibidores , Proteína Fosfatasa 2C/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Survivin/metabolismo
6.
Nat Commun ; 11(1): 612, 2020 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001712

RESUMEN

The kinase Aurora B forms the chromosomal passenger complex (CPC) together with Borealin, INCENP, and Survivin to mediate chromosome condensation, the correction of erroneous spindle-kinetochore attachments, and cytokinesis. Phosphorylation of histone H3 Thr3 by Haspin kinase and of histone H2A Thr120 by Bub1 concentrates the CPC at the centromere. However, how the CPC is recruited to chromosome arms upon mitotic entry is unknown. Here, we show that asymmetric dimethylation at Arg2 on histone H3 (H3R2me2a) by protein arginine methyltransferase 6 (PRMT6) recruits the CPC to chromosome arms and facilitates histone H3S10 phosphorylation by Aurora B for chromosome condensation. Furthermore, in vitro assays show that Aurora B preferentially binds to the H3 peptide containing H3R2me2a and phosphorylates H3S10. Our findings indicate that the long-awaited key histone mark for CPC recruitment onto mitotic chromosomes is H3R2me2a, which is indispensable for maintaining appropriate CPC levels in dynamic translocation throughout mitosis.


Asunto(s)
Arginina/metabolismo , Aurora Quinasa B/metabolismo , Segregación Cromosómica , Cromosomas Humanos/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Neoplasias de la Mama/patología , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Citocinesis , Desmetilación , Progresión de la Enfermedad , Femenino , Células HeLa , Histonas/química , Humanos , Células MCF-7 , Metilación , Mitosis , Fosforilación , ARN Interferente Pequeño/metabolismo
7.
Mol Cells ; 42(12): 840-849, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31722512

RESUMEN

The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.


Asunto(s)
Centriolos/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Huso Acromático/metabolismo , Ciclo Celular , Centrosoma/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas c-cbl/genética , ARN Interferente Pequeño , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
8.
Toxicol In Vitro ; 59: 115-125, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30980863

RESUMEN

Bisphenol A [BPA, 2,2-bis-(4-hydroxyphenyl)propane] is one of the most prevalent synthetic environmental estrogens; as an endocrine disruptor, it is associated with endocrine-related cancers including breast, ovarian, and prostate. However, the mechanisms by which BPA contributes to carcinogenesis are unclear. This study aims to clarify its toxic effects on mitotic cells and investigate the molecular mechanism. In vitro effects of BPA on mitotic progression were examined by performing experiments on HeLa cells. Proteins involved in mitotic processes were detected by Western blot, live cell imaging, and immunofluorescence staining. The results showed that BPA increased chromosomal instability by perturbing mitotic processes such as bipolar spindle formation and spindle microtubule attachment to the kinetochore. BPA prolonged mitotic progression by disturbing spindle attachment and concomitant activating spindle assembly checkpoint (SAC). Mechanistically, BPA interfered proper localization of HURP to the proximal ends of spindle microtubules, Kif2a to the minus ends of spindle microtubules, and TPX2 on the mitotic spindle. This mislocalization of microtubule associated proteins (MAPs) is postulated to lead to spindle attachment failure. Furthermore, BPA caused multipolar spindle by inducing centriole overduplication and premature disengagement. Although BPA acts as an estrogen receptor (ER) agonist, mitotic defects caused by BPA occurred in an ER-independent manner. Our findings indicate that BPA may stimulate carcinogenesis not only by acting as an endocrine disruptor but also by increasing chromosomal instability during mitosis.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Mitosis/efectos de los fármacos , Fenoles/toxicidad , Carcinogénesis/inducido químicamente , Centriolos/efectos de los fármacos , Inestabilidad Cromosómica/efectos de los fármacos , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Células MCF-7 , Proteínas de Neoplasias/metabolismo
9.
J Med Food ; 22(2): 186-195, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30585749

RESUMEN

Phytoestrogens possess beneficial effects in the management of menopausal symptoms with few side effects. Soybeans are major natural sources of isoflavones, with high estrogen receptor (ER)-ß selectivity. The objective of this study therefore was to develop a solvent-mediated extraction method for soybean germinated embryos (SGEs) and to investigate the biological activities of the extract. Ethanolic extraction yielded the SGE extract (SGEE), which had a unique composition of biologically active aglycones and soyasaponins. SGEE showed a proliferative effect in MCF7 cells and ERß-selective transcriptional activities in human embryonic kidney cells. In addition, oral administration of SGEE to ovariectomized rats resulted in the induction of ERß and estrogen-responsive genes in the uterus and a decrease in tail skin temperature and uterus weight. Our data suggest that germination and ethanolic extraction are effective measures for producing isoflavone-rich food supplements, which may be useful as alternative menopausal hormone therapy.


Asunto(s)
Receptor beta de Estrógeno/metabolismo , Glycine max/química , Extractos Vegetales/farmacología , Saponinas/farmacología , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Piel/efectos de los fármacos , Útero/efectos de los fármacos , Animales , Temperatura Corporal , Femenino , Germinación , Humanos , Células MCF-7 , Menopausia , Tamaño de los Órganos/efectos de los fármacos , Ovariectomía , Fitoestrógenos/farmacología , Fitoterapia , Ratas Sprague-Dawley , Semillas , Cola (estructura animal) , Útero/metabolismo
10.
Molecules ; 23(7)2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-29949932

RESUMEN

Sakuranetin (SKN), found in cherry trees and rice, is a flavanone with various pharmacological activities. It is biosynthesized from naringenin in rice or cherry trees, and the metabolism of SKN has been studied in non-human species. The present study aimed to investigate the metabolic pathways of SKN in human liver microsomes and identify the phase I and phase II metabolites, as well as evaluate the potential for drug⁻herb interactions through the modulation of drug metabolizing enzymes (DMEs). HPLC-DAD and HPLC-electrospray mass spectrometry were used to study the metabolic stability and identify the metabolites from human liver microsomes incubated with SKN. The potential of SKN to inhibit the DMEs was evaluated by monitoring the formation of a DME-specific product. The cytochrome P450 2B6 and 3A4-inductive effects were studied using promoter reporter assays in human hepatocarcinoma cells. The major pathways for SKN metabolism include B-ring hydroxylation, 5-O-demethylation, and conjugation with glutathione or glucuronic acid. The phase I metabolites were identified as naringenin and eriodictyol. SKN was found to be a UDP-glucuronosyltransferases (UGT) 1A9 inhibitor, whereas it induced transactivation of the human pregnane X receptor-mediated cytochrome P450 (CYP) 3A4 gene.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/metabolismo , Glucuronosiltransferasa/metabolismo , Hígado/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Sistema Enzimático del Citocromo P-450/genética , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Fase I de la Desintoxicación Metabólica , Fase II de la Desintoxicación Metabólica , Metaboloma , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , NADP/metabolismo , Receptor X de Pregnano , Regiones Promotoras Genéticas/genética , Receptores de Esteroides/metabolismo , Activación Transcripcional/genética , Uridina Difosfato Ácido Glucurónico/metabolismo
11.
Exp Mol Med ; 49(11): e390, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29147007

RESUMEN

When a ribosome complex is stalled during the translation elongation process in eukaryotes, the mono-ubiquitination of Rps3 has recently been shown to be critical to ribosome quality control. We have discovered that the regulatory role of Rps3 mono-ubiquitination is controlled by a deubiquitinase. We also showed that an autophagic signal appears to be coupled to the mono-ubiquitination of Rps3p through the entrance of Ubp3p into the autophagosome in yeasts. The mono-ubiquitination of the Rps3 protein is tightly modulated by reciprocal action between the Hel2p E3 ligase and the Ubp3p deubiquitinase in yeasts and the reciprocal action between the RNF123 E3 ligase and the USP10 deubiquitinase in mammalian cells. We also found that the Ubp3p/USP10 deubiquitinases critically modulate Hel2p/RNF123-mediated Rps3p mono-ubiquitination. In addition, we found that Hel2p/RNF123 and Ubp3p/USP10 appeared to be differently localized in the ribosome complex after ultraviolet irradiation. Together, our results support a model in which coordinated ubiquitination and deubiquitination activities can finely balance the level of regulatory Rps3p mono-ubiquitination in ribosome-associated quality control and autophagy processes.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aminoácidos/metabolismo , Apoptosis , Supervivencia Celular , Humanos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Ribosomas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación
12.
Toxicol Lett ; 281: 110-118, 2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-28964810

RESUMEN

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most potent risk factor among tobacco-related carcinogens in lung cancer progression and outcomes. Although genetic mutations and chromosome instability have been detected in NNK-induced lung tumors, the oncogenic mechanisms of NNK are not fully understood. Here, we show that NNK increases chromosomal instability by disrupting spindle microtubule (MT) attachment to the kinetochore (KT) and spindle dynamics. Mechanistically, NNK blocks the targeting of p53 to the centrosome during mitosis, leading to chromosome alignment defects in metaphase. Therefore, lung cancer cells with wild-type p53, such as A594 and H226B, are more resistant to the NNK treatment than p53-mutant lung cancer cells, such as A1299 and H226Br. Although NNK does not affect the levels or transcriptional activity of p53, the reduction of the p53 level at the centrosome exacerbates the NNK-induced chromosome alignment defect in A549 and H226B cells. Therefore, p53 protects against NNK-induced chromosome instability by modulating the function of centrosome-localized p53 and not by modulating transcriptional activity. We conclude that NNK may increase the risk of lung cancer progression and poorer outcomes in patients with p53 mutations by perturbing proper mitotic progression and chromosome integrity.


Asunto(s)
Carcinógenos/toxicidad , Centrosoma/efectos de los fármacos , Nicotiana/química , Nitrosaminas/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Línea Celular Tumoral , Centrosoma/metabolismo , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Células HeLa , Humanos , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Mitosis/efectos de los fármacos , Factores de Riesgo , Proteína p53 Supresora de Tumor/genética
13.
Br J Pharmacol ; 174(12): 1810-1825, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28299790

RESUMEN

BACKGROUND AND PURPOSE: Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH: The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS: Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS: TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inestabilidad Cromosómica/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antineoplásicos/química , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ligandos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Relación Estructura-Actividad , Células Tumorales Cultivadas , Adulto Joven
14.
Phytother Res ; 31(1): 140-151, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28058783

RESUMEN

Larrea nitida Cav. (LNC), which belongs to the family Zygophyllaceae, is widely indigenous and used in South America to treat various pathological conditions. It contains the antioxidant and antiinflammatory but toxic nordihydroguaiaretic acid (NDGA) as well as O-methylated metabolite of NDGA (MNDGA) as bioactive compounds. The hepatic metabolism-based toxicological potential of extracts of LNC (LNE), NDGA, and MNDGA has not previously been reported. The present study aimed to characterize the phase I and phase II hepatic metabolism and reactive intermediates of LNE, NDGA, and MNDGA and their effects on the major drug-metabolizing enzymes in vitro and ex vivo. A methanol extract of LNC collected from Chile as well as NDGA and MNDGA isolated from LNE were subjected to metabolic stability assays in liver microsomes in the presence of the cofactors reduced nicotinamide dinucleotide phosphate (NADPH) and/or uridine 5'-diphosphoglucuronic acid (UDPGA). Cytochrome P450 (CYP) inhibition assays were performed using CYP isozyme-specific model substrates to examine the inhibitory activities of LNE, NDGA, and MNDGA, which were expressed as % inhibition and IC50 values. Ex vivo CYP induction potential was investigated in the liver microsomes prepared from the rats intraperitoneally administered with LNE. Glutathione (GSH) adduct formation was monitored by LC-MS3 analysis of the microsomal incubation samples with either NDGA or MNDGA and an excess of GSH to determine the formation of electrophilic reactive intermediates. Both NDGA and MNDGA were stable to NADPH-dependent phase I metabolism, but labile to glucuronide conjugation. LNE, NDGA, and MNDGA showed significant inhibitory effects on CYP1A2, 2C9, 2D6, and/or 3A4, with IC50 values in the micromolar range. LNE was found to be a CYP1A2 inducer in ex vivo rat experiments, and mono- and di-GSH adducts of both NDGA and MNDGA were identified by LC-MS3 analysis. Our study suggests that hepatic clearance is the major elimination route for the lignans NDGA and MNDGA present in LNE. These lignans may possess the ability to modify biomacromolecules via producing reactive intermediates. In addition, LNE, NDGA, and MNDGA are found to be inhibitors for various CYP isozymes such as CYP2C9 and 3A4. Thus, the consumption of LNC as an herbal preparation or NDGA may cause metabolism-driven herb-drug interactions. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Larrea/química , Lignanos/química , Hígado/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Animales , Femenino , Interacciones de Hierba-Droga , Humanos , Lignanos/farmacología , Ratas
15.
J Cell Sci ; 129(14): 2719-25, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27284004

RESUMEN

Active turnover of spindle microtubules (MTs) for the formation of a bi-orientated spindle, chromosome congression and proper chromosome segregation is regulated by MT depolymerases such as the kinesin-13 family and the plus-end-tracking proteins (+TIPs). However, the control mechanisms underlying the spindle MT dynamics that are responsible for poleward flux at the minus end of MTs are poorly understood. Here, we show that Mdp3 (also known as MAP7D3) forms a complex with DDA3 (also known as PSRC1) and controls spindle dynamics at the minus end of MTs by inhibiting DDA3-mediated Kif2a recruitment to the spindle. Aberrant Kif2a activity at the minus end of spindle MTs in Mdp3-depleted cells decreased spindle stability and resulted in unaligned chromosomes in metaphase, lagging chromosomes in anaphase, and chromosome bridges in telophase and cytokinesis. Although they play opposing roles in minus-end MT dynamics, acting as an MT destabilizer and an MT stabilizer, respectively, DDA3 and Mdp3 did not affect the localization of each other. Thus, the DDA3 complex orchestrates MT dynamics at the MT minus end by fine-tuning the recruitment of Kif2a to regulate minus-end MT dynamics and poleward MT flux at the mitotic spindle.


Asunto(s)
Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Huso Acromático/metabolismo , Cromosomas Humanos/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Polimerizacion , Unión Proteica
16.
J Biol Chem ; 291(34): 17579-92, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27325694

RESUMEN

The error-free segregation of chromosomes, which requires the precisely timed search and capture of chromosomes by spindles during early mitotic and meiotic cell division, is responsible for genomic stability and is achieved by the spindle assembly checkpoint in the metaphase-anaphase transition. Mitotic kinases orchestrate M phase events, such as the reorganization of cell architecture and kinetochore (KT) composition with the exquisite phosphorylation of mitotic regulators, to ensure timely and temporal progression. However, the molecular mechanisms underlying the changes of KT composition for stable spindle attachment during mitosis are poorly understood. Here, we show that the sequential action of the kinase Cdk1 and the phosphatase Cdc14A control spindle attachment to KTs. During prophase, the mitotic spindle protein Spag5/Astrin is transported into centrosomes by Kinastrin and phosphorylated at Ser-135 and Ser-249 by Cdk1, which, in prometaphase, is loaded onto the spindle and targeted to KTs. We also demonstrate that Cdc14A dephosphorylates Astrin, and therefore the overexpression of Cdc14A sequesters Astrin in the centrosome and results in aberrant chromosome alignment. Mechanistically, Plk1 acts as an upstream kinase for Astrin phosphorylation by Cdk1 and targeting phospho-Astrin to KTs, leading to the recruitment of outer KT components, such as Cenp-E, and the stable attachment of spindles to KTs. These comprehensive findings reveal a regulatory circuit for protein targeting to KTs that controls the KT composition change of stable spindle attachment and chromosome integrity.


Asunto(s)
Anafase/fisiología , Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metafase/fisiología , Proteína Quinasa CDC2 , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Células HeLa , Humanos , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Fosfatasas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Quinasa Tipo Polo 1
17.
Int J Nanomedicine ; 11: 1413-25, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103799

RESUMEN

Investigation of potential therapeutics for targeting breast cancer stem cells (BCSCs) is important because these cells are regarded as culprit of breast cancer relapse. Accomplishing this kind of strategy requires a specific drug-delivery system using the distinct features of liposomes. Studies on targeted liposomal delivery systems have indicated the conjugation of hyaluronan (HA), a primary ligand for CD44 surface markers, as an appropriate method for targeting BCSCs. For this study, enriched BCSCs were obtained by culturing MCF-7 breast cancer cells in nonadherent conditions. The enriched BCSCs were challenged with HA-conjugated liposomes encapsulating gemcitabine (2, 2-difluoro-2-deoxycytidine, GEM). In vitro study showed that the HA-conjugated liposomes significantly enhanced the cytotoxicity, anti-migration, and anti-colony formation abilities of GEM through targeting of CD44 expressed on BCSCs. In pharmacokinetic study, area under the drug concentration vs time curve (AUC) of the immunoliposomal GEM was 3.5 times higher than that of free GEM, indicating that the HA-conjugated liposomes enhanced the stability of GEM in the bloodstream and therefore prolonged its half-life time. The antitumor effect of the immunoliposomal GEM was 3.3 times higher than that of free GEM in a xenograft mouse model, probably reflecting the unique targeting of the CD44 receptor by HA and the increased cytotoxicity and stability through the liposomal formulation. Furthermore, marginal change in body weight demonstrated that the use of liposomes considerably reduced the systemic toxicity of GEM on normal healthy cells. Taken together, this study demonstrates that HA-conjugated liposomes encapsulating GEM show promise for the therapy of breast cancer in vitro and in a xenograft model by targeting the BCSCs.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Ácido Hialurónico/química , Liposomas/química , Células Madre Neoplásicas/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/farmacología , Sistemas de Liberación de Medicamentos , Femenino , Semivida , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Células Madre Neoplásicas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
18.
Phytother Res ; 30(6): 971-80, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26989859

RESUMEN

Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17ß-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Opuntia/química , Receptores de Estrógenos/química , Animales , Femenino , Humanos , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Transfección
19.
Cell Mol Life Sci ; 73(17): 3375-86, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26906715

RESUMEN

Aurora B activation is triggered at the mitotic entry and required for proper microtubule-kinetochore attachment at mitotic phase. Therefore, Aurora B should be in inactive form in interphase to prevent aberrant cell cycle progression. However, it is unclear how the inactivation of Aurora B is sustained during interphase. In this study, we find that IK depletion-induced mitotic arrest leads to G2 arrest by Aurora B inhibition, indicating that IK depletion enhances Aurora B activation before mitotic entry. IK binds to Aurora B, and colocalizes on the nuclear foci during interphase. Our data further show that IK inhibits Aurora B activation through recruiting PP2A into IK and Aurora B complex. It is thus believed that IK, as a scaffold protein, guides PP2A into Aurora B to suppress its activity in interphase until mitotic entry.


Asunto(s)
Aurora Quinasa B/metabolismo , Citocinas/metabolismo , Proteína Fosfatasa 2/metabolismo , Aurora Quinasa B/antagonistas & inhibidores , Benzamidas/farmacología , Citocinas/antagonistas & inhibidores , Citocinas/genética , Activación Enzimática/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Interfase , Puntos de Control de la Fase M del Ciclo Celular , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Tubulina (Proteína)/metabolismo
20.
Biochem Biophys Res Commun ; 470(3): 484-491, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26820536

RESUMEN

Spindle dynamics drives chromosome movement and mitotic progression during mitosis. Microtubule (MT)-associated proteins (MAPs) regulate MT stabilization/destabilization and MT polymerization/depolymerization for congression of sister chromatids at the mitotic equator and subsequent segregation toward the spindle poles. Here, we identified ANKRD53 as a novel DDA3-interacting protein through proteomic analysis. Based on expression profiles, ANKRD53 is phosphorylated by mitotic kinases during mitosis. In ANKRD53-depleted HeLa cells, the progression of mitosis was delayed and the number of unaligned chromosomes increased substantially. In addition, spindle MT polymerization decreased and the spindle assembly checkpoint (SAC) was concomitantly activated by the decreased spindle dynamics in ANKRD53-depleted cells. Although ANKRD53 is recruited to the mitotic spindle by DDA3, it counteracts the activity of DDA3 for spindle MT polymerization. Furthermore, ANKRD53 depletion increased the number of bi-nuclei and polylobed nuclei. Thus, ANKRD53 is recruited to the mitotic spindle by DDA3 and acts as a regulator of spindle dynamics and cytokinesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Núcleo Celular/fisiología , Cromosomas/fisiología , Mitosis/fisiología , Fosfoproteínas/metabolismo , Huso Acromático/fisiología , Núcleo Celular/ultraestructura , Cromosomas/ultraestructura , Regulación de la Expresión Génica/fisiología , Células HeLa , Humanos , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...