Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21
1.
Ann Rheum Dis ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38527764

OBJECTIVES: Inflammatory cytokines that signal through the Janus kinases-signal transducer and activator of transcription (JAK-STAT) pathway, especially interferons (IFNs), are implicated in Sjögren's disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signalling and the effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been fully investigated. METHODS: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single-cell (sc) RNA sequencing (RNAseq), immunofluorescence (IF) microscopy and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. RESULTS: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (eg, focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell type-specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFN-ß, which were normalised by JAKi without cytotoxicity. CONCLUSIONS: SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalises this aberrant signalling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a phase Ib/IIa randomised controlled trial to treat SjD with tofacitinib was initiated.

2.
medRxiv ; 2023 Aug 21.
Article En | MEDLINE | ID: mdl-37662351

Objectives: Inflammatory cytokines that signal through the JAK- STAT pathway, especially interferons (IFNs), are implicated in Sjögren's Disease (SjD). Although inhibition of JAKs is effective in other autoimmune diseases, a systematic investigation of IFN-JAK-STAT signaling and effect of JAK inhibitor (JAKi) therapy in SjD-affected human tissues has not been reported. Methods: Human minor salivary glands (MSGs) and peripheral blood mononuclear cells (PBMCs) were investigated using bulk or single cell (sc) RNA sequencing (RNAseq), immunofluorescence microscopy (IF), and flow cytometry. Ex vivo culture assays on PBMCs and primary salivary gland epithelial cell (pSGEC) lines were performed to model changes in target tissues before and after JAKi. Results: RNAseq and IF showed activated JAK-STAT pathway in SjD MSGs. Elevated IFN-stimulated gene (ISGs) expression associated with clinical variables (e.g., focus scores, anti-SSA positivity). scRNAseq of MSGs exhibited cell-type specific upregulation of JAK-STAT and ISGs; PBMCs showed similar trends, including markedly upregulated ISGs in monocytes. Ex vivo studies showed elevated basal pSTAT levels in SjD MSGs and PBMCs that were corrected with JAKi. SjD-derived pSGECs exhibited higher basal ISG expressions and exaggerated responses to IFNß, which were normalized by JAKi without cytotoxicity. Conclusions: SjD patients' tissues exhibit increased expression of ISGs and activation of the JAK-STAT pathway in a cell type-dependent manner. JAKi normalizes this aberrant signaling at the tissue level and in PBMCs, suggesting a putative viable therapy for SjD, targeting both glandular and extraglandular symptoms. Predicated on these data, a Phase Ib/IIa randomized controlled trial to treat SjD with tofacitinib was initiated.

3.
Res Sq ; 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38196575

Sjögren's Disease (SjD) is a systemic autoimmune disease without a clear etiology or effective therapy. Utilizing unbiased single-cell and spatial transcriptomics to analyze human minor salivary glands in health and disease we developed a comprehensive understanding of the cellular landscape of healthy salivary glands and how that landscape changes in SjD patients. We identified novel seromucous acinar cell types and identified a population of PRR4+CST3+WFDC2- seromucous acinar cells that are particularly targeted in SjD. Notably, GZMK+CD8 T cells, enriched in SjD, exhibited a cytotoxic phenotype and were physically associated with immune-engaged epithelial cells in disease. These findings shed light on the immune response's impact on transitioning acinar cells with high levels of secretion and explain the loss of this specific cell population in SjD. This study explores the complex interplay of varied cell types in the salivary glands and their role in the pathology of Sjögren's Disease.

4.
Nat Med ; 27(5): 892-903, 2021 05.
Article En | MEDLINE | ID: mdl-33767405

Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.


COVID-19/virology , Mouth/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Angiotensin-Converting Enzyme 2/analysis , Asymptomatic Infections , COVID-19/etiology , Humans , Serine Endopeptidases/analysis , Taste Disorders/etiology , Taste Disorders/virology , Virus Replication
5.
Ann Rheum Dis ; 80(8): 1031-1039, 2021 08.
Article En | MEDLINE | ID: mdl-33658234

OBJECTIVES: Sjögren's syndrome (SS) is an autoimmune sialadenitis with unknown aetiology. Although extensive research implicated an abnormal immune response associated with lymphocytes, an initiating event mediated by salivary gland epithelial cell (SGEC) abnormalities causing activation is poorly characterised. Transcriptome studies have suggested alternations in lysosomal function are associated with SS, but a cause and effect linkage has not been established. In this study, we demonstrated that altered lysosome activity in SGECs by expression of lysosome-associated membrane protein 3 (LAMP3) can initiate an autoimmune response with autoantibody production and salivary dysfunction similar to SS. METHODS: Retroductal cannulation of the submandibular salivary glands with an adeno-associated virus serotype 2 vector encoding LAMP3 was used to establish a model system. Pilocarpine-stimulated salivary flow and the presence of autoantibodies were assessed at several time points post-cannulation. Salivary glands from the mice were evaluated using RNAseq and histologically. RESULTS: Following LAMP3 expression, saliva flow was significantly decreased and serum anti-Ro/SSA and La/SSB antibodies could be detected in the treated mice. Mechanistically, LAMP3 expression increased apoptosis in SGECs and decreased protein expression related to saliva secretion. Analysis of RNAseq data suggested altered lysosomal function in the transduced SGECs, and that the cellular changes can chemoattract immune cells into the salivary glands. Immune cells were activated via toll-like receptors by damage-associated molecular patterns released from LAMP3-expressing SGECs. CONCLUSIONS: These results show a critical role for lysosomal trafficking in the development of SS and establish a causal relationship between LAMP3 misexpression and the development of SS.


Sialadenitis , Sjogren's Syndrome , Animals , Humans , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Mice , Phenotype , Salivary Glands , Sialadenitis/pathology
6.
Mol Ther Methods Clin Dev ; 19: 459-466, 2020 Dec 11.
Article En | MEDLINE | ID: mdl-33294494

The loss of salivary gland function caused by radiation therapy of the head and neck or autoimmune disease such as Sjögren's syndrome is a serious condition that affects a patient's quality of life. Due to the combined exocrine and endocrine functions of the salivary gland, gene transfer to the salivary glands holds the potential for developing therapies for disorders of the salivary gland and the expression of therapeutic proteins via the exocrine pathway to the mouth, upper gastrointestinal tract, or endocrine pathway, systemically, into the blood. Recent clinical success with viral vector-mediated gene transfer for the treatment of irradiation-induced damage to the salivary glands has highlighted the need for the development of novel vectors with acinar cell tropism able to result in stable long-term transduction. Previous studies with adeno-associated virus (AAV) focused on the submandibular gland and reported mostly ductal cell transduction. In this study, we have screened AAV vectors for acinar cell tropism in the parotid gland utilizing membrane-tomato floxed membrane-GFP transgenic mice to screen CRE recombinase encoding AAV vectors of different clades to rapidly identify capsid isolates able to transduce salivary gland acinar cells. We determined that AAVRh10 and a novel isolate found as a contaminant of a laboratory stock of simian adenovirus SV15, AAV44.9, are both able to transduce parotid and sublingual acinar cells. Persistence and localization of transduction of these AAVs were tested using vectors encoding firefly luciferase, which was detected 6 months after vector administration. Most luciferase expression was localized to the salivary gland compared to that of distal organs. Transduction resulted in robust secretion of recombinant protein in both blood and saliva. Transduction was species specific, with AAVRh10 having stronger transduction activity in rats compared with AAV44.9 or AAV2 but weaker in human primary salivary gland cells. This work demonstrates efficient transduction of parotid acinar cells by AAV that resulted in secretion of recombinant protein in both serum and saliva.

7.
Sci Rep ; 10(1): 15169, 2020 09 16.
Article En | MEDLINE | ID: mdl-32939030

Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by dysfunction of secretory epithelia with only palliative therapy. Patients present with a constellation of symptoms, and the diversity of symptomatic presentation has made it difficult to understand the underlying disease mechanisms. In this study, aggregation of unbiased transcriptome profiling data sets of minor salivary gland biopsies from controls and Sjögren's syndrome patients identified increased expression of lysosome-associated membrane protein 3 (LAMP3/CD208/DC-LAMP) in a subset of Sjögren's syndrome cases. Stratification of patients based on their clinical characteristics suggested an association between increased LAMP3 expression and the presence of serum autoantibodies including anti-Ro/SSA, anti-La/SSB, anti-nuclear antibodies. In vitro studies demonstrated that LAMP3 expression induces epithelial cell dysfunction leading to apoptosis. Interestingly, LAMP3 expression resulted in the accumulation and release of intracellular TRIM21 (one component of SSA), La (SSB), and α-fodrin protein, common autoantigens in Sjögren's syndrome, via extracellular vesicles in an apoptosis-independent mechanism. This study defines a clear role for LAMP3 in the initiation of apoptosis and an independent pathway for the extracellular release of known autoantigens leading to the formation of autoantibodies associated with this disease.ClinicalTrials.gov Identifier: NCT00001196, NCT00001390, NCT02327884.


Autoantigens/metabolism , Lysosomal Membrane Proteins/immunology , Neoplasm Proteins/immunology , Sjogren's Syndrome/immunology , Sjogren's Syndrome/pathology , Apoptosis/immunology , Autoantibodies/blood , Autoantigens/genetics , Autoantigens/immunology , Case-Control Studies , Caspase 3/genetics , Caspase 3/metabolism , Cell Line , Extracellular Vesicles/immunology , Gene Expression Profiling , Humans , Lysosomal Membrane Proteins/genetics , Neoplasm Proteins/genetics , Ribonucleoproteins/genetics , Ribonucleoproteins/immunology , Salivary Glands, Minor/immunology , Salivary Glands, Minor/pathology , Sjogren's Syndrome/genetics , Up-Regulation , SS-B Antigen
8.
JCI Insight ; 5(9)2020 05 07.
Article En | MEDLINE | ID: mdl-32376798

Sjögren's syndrome (SS) is a systemic autoimmune disease that mainly affects exocrine salivary and lacrimal glands. Local inflammation in the glands is thought to trigger glandular dysfunction and symptoms of dryness. However, the mechanisms underlying these processes are incompletely understood. Our work suggests T cell exosome-derived miR-142-3p as a pathogenic driver of immunopathology in SS. We first document miR-142-3p expression in the salivary glands of patients with SS, both in epithelial gland cells and within T cells of the inflammatory infiltrate, but not in healthy volunteers. Next, we show that activated T cells secreted exosomes containing miR-142-3p, which transferred into glandular cells. Finally, we uncover a functional role of miR-142-3p-containing exosomes in glandular cell dysfunction. We find that miR-142-3p targets key elements of intracellular Ca2+ signaling and cAMP production - sarco(endo)plasmic reticulum Ca2+ ATPase 2b (SERCA2B), ryanodine receptor 2 (RyR2), and adenylate cyclase 9 (AC9) - leading to restricted cAMP production, altered calcium signaling, and decreased protein production from salivary gland cells. Our work provides evidence for a functional role of the miR-142-3p in SS pathogenesis and promotes the concept that T cell activation may directly impair epithelial cell function through secretion of miRNA-containing exosomes.


Epithelial Cells , Exosomes , MicroRNAs/physiology , Salivary Glands , Sjogren's Syndrome , T-Lymphocytes , Adenylyl Cyclases/metabolism , Adult , Aged , Calcium Signaling , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exosomes/immunology , Exosomes/metabolism , Female , Humans , Male , Middle Aged , Ryanodine Receptor Calcium Release Channel/metabolism , Salivary Glands/immunology , Salivary Glands/metabolism , Salivary Glands/pathology , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sjogren's Syndrome/immunology , Sjogren's Syndrome/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Young Adult
9.
EBioMedicine ; 48: 526-538, 2019 Oct.
Article En | MEDLINE | ID: mdl-31597594

BACKGROUND: Sjögren's syndrome (SS) is one of the most common autoimmune disorders leading to exocrine gland dysfunction. Both immune-dependent processes - like Type I Interferon (IFN) signaling and immune-independent processes - such as calcium signaling in epithelial cells - contribute to disease pathophysiology. However, a mechanistic link between these processes has not been demonstrated. METHODS: Primary human salivary gland cells were used to evaluate the differential expression of miRNAs with smRNA-seq in primary epithelial cells culture and digital PCR was conducted in SS human salivary glands (SG) biopsies to verify the results. With siRNA screening and pull-down assays to establish the role of miRNA in IFN activation. FINDINGS: Activation of IFN-ß by miR-1248 is through the direct association with both RIG-I and AGO2. Further functional studies establish a unique dual functional role of miR-1248 in phSG cells: i) activation of the RIG-I pathway by acting as ligand of this sensor leading to IFN production and ii) regulation of the expression of mRNAs through the canonical microRNA function. Importantly, ITPR3, a key component of calcium signaling in epithelial cells, that has previously shown to be downregulated in SS SG, was directly targeted and downregulated by miR-1248, inducing the same functional calcium signaling changes as observed in SS SGs. INTERPRETATION: Identification of the first endogenous mammalian microRNA that binds to RIG-I inducing IFN production but also demonstrate a novel pathophysiological underlying mechanism in which miR-1248 overexpression links two major pathways associated with SS, namely activation of IFN production with modulation of calcium signaling. Together, these findings suggest a unifying hypothesis for the immune-independent and -dependent processes contributing to the pathogenesis of SS. FUND: This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Dental and Craniofacial Research (NIDCR).


Calcium Signaling , Gene Expression Regulation , Interferons/genetics , MicroRNAs/genetics , Sjogren's Syndrome/etiology , Sjogren's Syndrome/metabolism , Disease Susceptibility , Humans , Interferons/metabolism , Models, Biological , RNA Interference , Salivary Glands/immunology , Salivary Glands/metabolism , Salivary Glands/pathology , Sjogren's Syndrome/diagnosis
10.
EBioMedicine ; 10: 216-26, 2016 Aug.
Article En | MEDLINE | ID: mdl-27381477

Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease that is associated with inflammation and dysfunction of salivary and lacrimal glands. The molecular mechanism(s) underlying this exocrinopathy is not known, although the syndrome has been associated with viruses, such as the Epstein Barr Virus (EBV). We report herein that an EBV-specific microRNA (ebv-miR-BART13-3p) is significantly elevated in salivary glands (SGs) of pSS patients and we show that it targets stromal interacting molecule 1 (STIM1), a primary regulator of the store-operated Ca(2+) entry (SOCE) pathway that is essential for SG function, leading to loss of SOCE and Ca(2+)-dependent activation of NFAT. Although EBV typically infects B cells and not salivary epithelial cells, ebv-miR-BART13-3p is present in both cell types in pSS SGs. Importantly, we further demonstrate that ebv-miR-BART13-3p can be transferred from B cells to salivary epithelial cells through exosomes and it recapitulates its functional effects on calcium signaling in a model system.


Exosomes/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Sjogren's Syndrome/etiology , Sjogren's Syndrome/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Aquaporin 5/genetics , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Biological Transport , Down-Regulation , Epithelial Cells/metabolism , Humans , NFATC Transcription Factors/metabolism , RNA Interference , Salivary Glands/metabolism
11.
J Biol Chem ; 291(16): 8709-20, 2016 Apr 15.
Article En | MEDLINE | ID: mdl-26903518

The signaling pathways involved in the generation and maintenance of exocrine gland acinar cells have not yet been established. Primary human salivary gland epithelial cells, derived from salivary gland biopsies, acquired an acinar-like phenotype when the [Ca(2+)] in the serum-free medium (keratinocyte growth medium, KGM) was increased from 0.05 mm (KGM-L) to 1.2 mm (KGM-H). Here we examined the mechanism underlying this Ca(2+)-dependent generation of the acinar cell phenotype. Compared with cells in KGM-L, those in KGM-H display enhancement of Orai1, STIM1, STIM2, and nuclear factor of activated T cells 1 (NFAT1) expression together with an increase in store-operated Ca(2+) entry (SOCE), SOCE-dependent nuclear translocation of pGFP-NFAT1, and NFAT-dependent but not NFκB-dependent gene expression. Importantly, AQP5, an acinar-specific protein critical for function, is up-regulated in KGM-H via SOCE/NFAT-dependent gene expression. We identified critical NFAT binding motifs in the AQP5 promoter that are involved in Ca(2+)-dependent up-regulation of AQP5. These important findings reveal that the Ca(2+)-induced switch of salivary epithelial cells to an acinar-like phenotype involves remodeling of SOCE and NFAT signaling, which together control the expression of proteins critically relevant for acinar cell function. Our data provide a novel strategy for generating and maintaining acinar cells in culture.


Calcium Signaling/physiology , Calcium/metabolism , Epithelial Cells/metabolism , NFATC Transcription Factors/metabolism , Salivary Glands/metabolism , Up-Regulation/physiology , Aquaporin 5/biosynthesis , Aquaporin 5/genetics , Calcium Channels/biosynthesis , Cells, Cultured , Epithelial Cells/cytology , Humans , NFATC Transcription Factors/genetics , Salivary Glands/cytology
12.
Sci Rep ; 5: 13953, 2015 Sep 14.
Article En | MEDLINE | ID: mdl-26365984

The autoimmune exocrinopathy, Sjögren's syndrome (SS), is associated with secretory defects in patients, including individuals with mild lymphocytic infiltration and minimal glandular damage. The mechanism(s) underlying the secretory dysfunction is not known. We have used minor salivary gland biopsies from SS patients and healthy individuals to assess acinar cell function in morphologically intact glandular areas. We report that agonist-regulated intracellular Ca(2+) release, critically required for Ca(2+) entry and fluid secretion, is defective in acini from SS patients. Importantly, these acini displayed reduction in IP3R2 and IP3R3, but not AQP5 or STIM1. Similar decreases in IP3R and carbachol (CCh)-stimulated [Ca(2+)]i elevation were detected in acinar cells from lymphotoxin-alpha (LTα) transgenic (TG) mice, a model for (SS). Treatment of salivary glands from healthy individuals with LT α, a cytokine linked to disease progression in SS and IL14α mice, reduced Ca(2+) signaling. Together, our findings reveal novel IP3R deficits in acinar cells that underlie secretory dysfunction in SS patients.


Inositol 1,4,5-Trisphosphate Receptors/metabolism , Salivary Glands/metabolism , Sjogren's Syndrome/pathology , Acinar Cells/cytology , Acinar Cells/drug effects , Acinar Cells/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Carbachol/pharmacology , Case-Control Studies , Cell Size/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Interleukins/deficiency , Interleukins/genetics , Lymphotoxin-alpha/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Salivary Glands/pathology , Sjogren's Syndrome/metabolism , Vesicular Transport Proteins
13.
J Am Soc Nephrol ; 24(7): 1073-87, 2013 Jun.
Article En | MEDLINE | ID: mdl-23723424

MicroRNAs (miRs) seem to mediate renal fibrosis in several renal diseases, with some miRs having profibrotic effects and others having opposing effects. Although differential expression of certain miRs has been described in lupus nephritis, it is unknown whether miRs contribute to fibrosis or could serve as biomarkers of specific histologic manifestations of lupus nephritis. Here, we compared miR expression in kidney biopsies from patients with lupus nephritis and identified miR-150 as the most differentially expressed miR in kidneys with high chronicity (chronicity index [CI] ≥ 4); miR-150 positively correlated with chronicity scores and the expression of profibrotic proteins. Overexpression of miR-150 significantly reduced expression of the antifibrotic protein suppressor of cytokine signaling 1 (SOCS1) and upregulated profibrotic proteins in both proximal tubular and mesangial cells. Directly targeting SOCS1 with a small interfering RNA produced similar results. Furthermore, TGF-ß1 induced miR-150 expression, decreased SOCS1, and increased profibrotic proteins in proximal tubular cells and podocytes; a miR-150 inhibitor reversed these changes, suggesting that the profibrotic effects of TGF-ß1 are, at least in part, mediated by miR-150. Consistent with these in vitro observations, biopsies with high miR-150 and high CI exhibited substantial expression of TGF-ß1, reduced SOCS1, and an increase in profibrotic proteins. In summary, miR-150 is a promising quantitative renal biomarker of kidney injury in lupus nephritis. Our results suggest that miR-150 promotes renal fibrosis by increasing profibrotic molecules through downregulation of SOCS1.


Fibrosis/metabolism , Kidney/metabolism , Lupus Nephritis/metabolism , MicroRNAs/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Biomarkers , Biopsy , Down-Regulation , Fluorescent Antibody Technique , Gene Expression , Humans , Kidney/pathology , Microarray Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Suppressor of Cytokine Signaling 1 Protein
14.
PLoS One ; 7(10): e47146, 2012.
Article En | MEDLINE | ID: mdl-23115638

Regulation of critical cellular functions, including Ca(2+)-dependent gene expression, is determined by the temporal and spatial aspects of agonist-induced Ca(2+) signals. Stimulation of cells with physiological concentrations of agonists trigger increases [Ca(2+)](i) due to intracellular Ca(2+) release and Ca(2+) influx. While Orai1-STIM1 channels account for agonist-stimulated [Ca(2+)](i) increase as well as activation of NFAT in cells such as lymphocytes, RBL and mast cells, both Orai1-STIM1 and TRPC1-STIM1 channels contribute to [Ca(2+)](i) increases in human submandibular gland (HSG) cells. However, only Orai1-mediated Ca(2+) entry regulates the activation of NFAT in HSG cells. Since both TRPC1 and Orai1 are activated following internal Ca(2+) store depletion in these cells, it is not clear how the cells decode individual Ca(2+) signals generated by the two channels for the regulation of specific cellular functions. Here we have examined the contributions of Orai1 and TRPC1 to carbachol (CCh)-induced [Ca(2+)](i) signals and activation of NFAT in single cells. We report that Orai1-mediated Ca(2+) entry generates [Ca(2+)](i) oscillations at different [CCh], ranging from very low to high. In contrast, TRPC1-mediated Ca(2+) entry generates sustained [Ca(2+)](i) elevation at high [CCh] and contributes to frequency of [Ca(2+)](i) oscillations at lower [agonist]. More importantly, the two channels are coupled to activation of distinct Ca(2+) dependent gene expression pathways, consistent with the different patterns of [Ca(2+)](i) signals mediated by them. Nuclear translocation of NFAT and NFAT-dependent gene expression display "all-or-none" activation that is exclusively driven by local [Ca(2+)](i) generated by Orai1, independent of global [Ca(2+)](i) changes or TRPC1-mediated Ca(2+) entry. In contrast, Ca(2+) entry via TRPC1 primarily regulates NFκB-mediated gene expression. Together, these findings reveal that Orai1 and TRPC1 mediate distinct local and global Ca(2+) signals following agonist stimulation of cells, which determine the functional specificity of the channels in activating different Ca(2+)-dependent gene expression pathways.


Calcium Channels/physiology , Calcium Signaling , Calcium/metabolism , Gene Expression , TRPC Cation Channels/physiology , Cells, Cultured , Humans , NF-kappa B/metabolism , NFATC Transcription Factors/metabolism , ORAI1 Protein
15.
J Biol Chem ; 282(28): 20245-55, 2007 Jul 13.
Article En | MEDLINE | ID: mdl-17510059

Mutation of human SOS1 is responsible for hereditary gingival fibromatosis type 1, a benign overgrowth condition of the gingiva. Here, we investigated molecular mechanisms responsible for the increased rate of cell proliferation in gingival fibroblasts caused by mutant SOS1 in vitro. Using ectopic expression of wild-type and mutant SOS1 constructs, we found that truncated SOS1 could localize to the plasma membrane, without growth factor stimuli, leading to sustained activation of Ras/MAPK signaling. Additionally, we observed an increase in the magnitude and duration of ERK signaling in hereditary gingival fibromatosis gingival fibroblasts that was associated with phosphorylation of retinoblastoma tumor suppressor protein and the up-regulation of cell cycle regulators, including cyclins C, D, and E and the E2F/DP transcription factors. These factors promote cell cycle progression from G(1) to S phase, and their up-regulation may underlie the increased gingival fibroblast proliferation observed. Selective depletion of wild-type and mutant SOS1 through small interfering RNA demonstrates the link between mutation of SOS1, ERK signaling, cell proliferation rate, and the expression levels of Egr-1 and proliferating cell nuclear antigen. These findings elucidate the mechanisms for gingival overgrowth mediated by SOS1 gene mutation in humans.


Fibroblasts/metabolism , Fibromatosis, Gingival/metabolism , G1 Phase , MAP Kinase Signaling System , S Phase , SOS1 Protein/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/pathology , Cells, Cultured , Cyclins/biosynthesis , E2F Transcription Factors/biosynthesis , Early Growth Response Protein 1/biosynthesis , Early Growth Response Protein 1/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/pathology , Fibromatosis, Gingival/genetics , Fibromatosis, Gingival/pathology , G1 Phase/genetics , Humans , MAP Kinase Signaling System/genetics , Phosphorylation , Proliferating Cell Nuclear Antigen/biosynthesis , Proliferating Cell Nuclear Antigen/genetics , Protein Processing, Post-Translational/genetics , Protein Transport/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Retinoblastoma Protein/genetics , Retinoblastoma Protein/metabolism , S Phase/genetics , SOS1 Protein/antagonists & inhibitors , SOS1 Protein/genetics , Up-Regulation/genetics
16.
Protein Expr Purif ; 49(2): 235-43, 2006 Oct.
Article En | MEDLINE | ID: mdl-16884923

The study of bacteriophage T4 assembly has revealed regulatory mechanisms pertinent not only to viruses but also to macromolecular complexes. The capsid of bacteriophage T4 is composed of the major capsid protein gp23, and a minor capsid protein gp24, which is arranged as pentamers at the vertices of the capsid. In this study the T4 capsid protein gp24 and its mutant forms were overexpressed and purified to homogeneity. The overexpression from plasmid vectors of all the constructs in Escherichia coli yields biologically active protein in vivo as determined by assembly of active virus following infection with inactivated gene 24 mutant viruses. The gp24 mutant was subjected to surface entropy reduction by mutagenesis and reductive alkylation in order to improve its crystallization properties and diffraction quality. To determine if surface mutagenesis targeting would result in diffractable crystals, two glutamate to alanine mutations (E89A,E90A) were introduced. We report here the biochemical observations and consequent mutagenesis experiment that resulted in improvements in the stability, crystallizability and crystal quality of gp24 without affecting the overall folding. Rational modification of the protein surface to achieve crystallization appears promising for improving crystallization behavior and crystal diffracting qualities. The crystal of gp24(E89A,E90A) diffracted to 2.6A resolution compared to wild-type gp24 at 3.80A resolution under the same experimental conditions. Surface mutation proved to be a better method than reductive methylation for improving diffraction quality of the gp24 crystals.


Amino Acid Substitution , Capsid Proteins/chemistry , Capsid Proteins/isolation & purification , Escherichia coli , Mutation, Missense , Capsid Proteins/biosynthesis , Capsid Proteins/genetics , Crystallography, X-Ray/methods , Escherichia coli/genetics , Protein Structure, Tertiary , Virus Assembly/physiology
17.
Exp Cell Res ; 308(1): 18-28, 2005 Aug 01.
Article En | MEDLINE | ID: mdl-15878526

AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear beta-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear beta-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3beta activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death.


Adenocarcinoma/metabolism , Giant Cells/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Stomach Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cadherins/biosynthesis , Cadherins/genetics , Cadherins/metabolism , Cell Count , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Shape/drug effects , Culture Media, Serum-Free/pharmacology , Cytoskeletal Proteins/metabolism , Down-Regulation/drug effects , Down-Regulation/genetics , Giant Cells/pathology , Humans , Signal Transduction/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Trans-Activators/metabolism , Wnt Proteins , beta Catenin
18.
J Cell Sci ; 118(Pt 4): 781-93, 2005 Feb 15.
Article En | MEDLINE | ID: mdl-15671067

Epiplakin is a member of the plakin family with multiple copies of the plakin repeat domain (PRD). We studied the subcellular distribution and interactions of human epiplakin by immunostaining, overlay assays and RNAi knockdown. Epiplakin decorated the keratin intermediate filaments (IF) network and partially that of vimentin. In the binding assays, the repeat unit (PRD plus linker) showed strong binding and preferentially associated with assembled IF over keratin monomers. Epiplakin knockdown revealed disruption of IF networks in simple epithelial but not in epidermal cells. In rescue experiments, the repeat unit was necessary to prevent the collapse of IF networks in transient knockdown; however, it could only partially restore the keratin but not the vimentin IF network in stably knocked down HeLa cells. We suggest that epiplakin is a cytolinker involved in maintaining the integrity of IF networks in simple epithelial cells. Furthermore, we observed an increase of epiplakin expression in keratinocytes after the calcium switch, suggesting the involvement of epiplakin in the process of keratinocyte differentiation.


Autoantigens/physiology , Intermediate Filaments/ultrastructure , Keratinocytes/ultrastructure , Keratins/analysis , Vimentin/analysis , Autoantigens/analysis , Autoantigens/chemistry , Cell Differentiation , Cells, Cultured , HeLa Cells , Humans , Intermediate Filaments/chemistry , Keratinocytes/cytology , Keratinocytes/metabolism , Protein Structure, Tertiary , RNA Interference
19.
J Biol Chem ; 277(47): 45195-202, 2002 Nov 22.
Article En | MEDLINE | ID: mdl-12228223

The suprabasin gene is a novel gene expressed in mouse and human differentiating keratinocytes. We identified a partial cDNA encoding suprabasin using a suppression subtractive hybridization method between the proliferative basal and differentiating suprabasal populations of the mouse epidermis. A 3' gene-specific probe hybridized to transcripts of 0.7- and 2.2-kb pairs on Northern blots with specific detection in differentiated keratinocytes of stratified epithelia. The mouse gene was mapped to chromosome 7 by fluorescence in situ hybridization. This region is syntenic to human chromosome band 19q13.1, which contained the only region in the data bases with homology to the mouse suprabasin sequence. During embryonic mouse development, suprabasin mRNA was detected at day 15.5, coinciding with epidermal stratification. Suprabasin was detected in the suprabasal layers of the epithelia in the tongue, stomach, and epidermis. Differentiation of cultured primary epidermal keratinocytes with 0.12 mm Ca(2+) or 12-O-tetradecanoylphorbol-13-acetate treatment resulted in the induction of suprabasin. The 2.2-kb cDNA transcript encodes a protein of 72 kDa with a predicted isoelectric point of 6.85. The translated sequence has an amino-terminal domain, a central domain composed of repeats rich in glycine and alanine, and a carboxyl-terminal domain. The alternatively spliced 0.7-kb transcript encodes a smaller protein that shares the NH(2)- and COOH-terminal regions but lacks the repeat domain region. Cross-linking experiments indicate that suprabasin is a substrate for transglutaminase 2 and 3 activity. Altogether, these results indicate that the suprabasin protein potentially plays a role in the process of epidermal differentiation.


Antigens, Differentiation/genetics , Antigens, Differentiation/metabolism , Cell Differentiation/physiology , Epidermis/physiology , Keratinocytes/metabolism , Ubiquitin-Protein Ligases/genetics , Amino Acid Sequence , Animals , Antigens, Differentiation/chemistry , Base Sequence , Cells, Cultured , Chromosomes, Human, Pair 7 , Culture Media, Serum-Free , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Epidermal Cells , Epidermis/chemistry , GTP-Binding Proteins/metabolism , Green Fluorescent Proteins , Humans , In Situ Hybridization , In Situ Hybridization, Fluorescence , Keratinocytes/cytology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Molecular Sequence Data , Protein Glutamine gamma Glutamyltransferase 2 , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Transglutaminases/metabolism , Tripartite Motif Proteins
20.
J Invest Dermatol ; 119(2): 440-8, 2002 Aug.
Article En | MEDLINE | ID: mdl-12190868

E-cadherin-mediated adherens junction formation and maintenance are thought to involve actin filament rearrangements through the action of small GTPases. Recently, we demonstrated that microtubule disruption in normal human epidermal keratinocytes grown in low calcium media conditions induces cell-cell adhesion by redistribution of endogenous E-cadherin, and it promotes stress fiber formation. This actin rearrangement was apparently mediated by RhoA activation. This model system therefore provides a tool with which to dissect relationships between cell-cell adhesion and Rho-mediated stress fiber formation. In this study, we have demonstrated in normal human epidermal keratinocytes that disruption of actin structures including stress fibers does not interfere with E-cadherin redistribution during microtubule-induced cell-cell adhesion. Moreover, this cell-cell adhesion could not be blocked by RhoA inactivation at the level for inhibition of stress fiber formation. Additionally, in the immortalized HaCaT keratinocyte cell line, which does not undergo cell-cell adhesion after microtubule disruption in low calcium conditions, expression of dominant-active RhoA could induce stress fiber formation without inducing adhesion. On the other hand, a variant of the HaCaT cell line, HC-R1, showed microtubule-disruption-induced cell-cell adhesion without stress fiber formation. Together, our results suggest that, in keratinocytes, the process of cell adhesion can occur independently of RhoA-mediated stress fiber formation.


Actins/metabolism , Cell Adhesion , Keratinocytes/physiology , Microtubules/physiology , rhoA GTP-Binding Protein/physiology , Cadherins/physiology , Cell Adhesion/drug effects , Cells, Cultured , Humans , Neomycin/pharmacology , Nocodazole/pharmacology , Polymers/metabolism , Stress Fibers/physiology
...