Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Comput Biol Med ; 174: 108406, 2024 May.
Article En | MEDLINE | ID: mdl-38603898

This study aims to extend earlier Krogh Cylinder Models of an oxygen profile by considering axial diffusion and analytically solving Fick's Law Partial Differential Equation with novel boundary conditions via the separation of variables. We next prospectively collected a total of 20 animals, which were randomly assigned to receive either fresh or two-week-old stored red blood cell (RBC) transfusions and PQM oxygen data were measured acutely (90 min) or chronically (24 h). Transfusion effects were evaluated in vivo using intravital microscopy of the dorsal skinfold window chamber in Golden Syrian Hamsters. Hamsters were initially hemorrhaged by 50% of total blood volume and resuscitated 1-h post hemorrhage. PQM data were subsequently collected and fit the derived 2D Krogh cylinder model. Systemic hemodynamics (mean arterial pressure, heart rate) were similar in both pre and post-transfusion with either stored or fresh cells. Transfusion with stored cells was found to impair axial and radial oxygen gradients as quantified by our model and consistent with previous studies. Specifically, we observed a statistically significant decrease in the arteriolar tissue radial oxygen gradient after transfusion with stored RBCs at 24 h compared with fresh RBCs (0.33 ± 0.17 mmHg µ m-1 vs, 0.14 ± 0.12 mmHg µ m-1; p = 0.0280). We also observed a deficit in the arteriolar tissue oxygen gradient (0.03 ± 0.01 mmHg µ m-1 fresh vs. 0.018 ± 0.007 mmHg µ m-1 stored; p = 0.0185). We successfully derived and validated an analytical 2D Krogh cylinder model in an animal model of microhemodynamic oxygen diffusion aberration secondary to storage lesions.


Mesocricetus , Oxygen , Animals , Oxygen/metabolism , Cricetinae , Microvessels/diagnostic imaging , Erythrocytes/metabolism , Models, Cardiovascular , Male , Luminescent Measurements/methods , Diffusion , Intravital Microscopy
2.
Exp Parasitol ; 254: 108608, 2023 Nov.
Article En | MEDLINE | ID: mdl-37673369

Cerebral malaria (CM) is a severe manifestation of malaria that commonly occurs in children and is hallmarked by neurologic symptoms and significant Plasmodium falciparum parasitemia. It is currently hypothesized that cerebral hypoperfusion from impaired microvascular oxygen transport secondary to parasitic occlusion of the microvasculature is responsible for cerebral ischemia and thus disease severity. Animal models to study CM, are known as experimental cerebral malaria (ECM), and include the C57BL/6J infected with Plasmodium berghei ANKA (PbA), which is ECM-susceptible, and BALB/c infected with PbA, which is ECM-resistant. Here we sought to investigate whether changes in oxygen (O2) delivery, O2 flux, and O2 utilization are altered in both these models of ECM using phosphorescence quenching microscopy (PQM) and direct measurement of microvascular hemodynamics using the cranial window preparation. Animal groups used for investigation consisted of ECM-susceptible C57BL/6 (Infected, n = 14) and ECM-resistant BALB/c (Infected, n = 9) mice. Uninfected C57BL/6 (n = 6) and BALB/c (n = 6) mice were included as uninfected controls. Control animals were manipulated in the exact same way as the infected mice (except for the infection itself). C57BL/6 ECM animals at day 6 of infection were divided into two cohorts: Early-stage ECM, presenting mild to moderate drops in body temperature (>34 < 36 °C) and Late-stage ECM, showing marked drops in body temperature (<33 °C). Data taken from new experiments conducted with these animal models were analyzed using a general linear mixed model. We constructed three general linear mixed models, one for total O2 content, another for total O2 delivery, and the third for total O2 content as a function of convective flow. We found that in both the ECM-susceptible C57BL/6J model and ECM-resistant BALB/c model of CM, convective and diffusive O2 flux along with pial hemodynamics are impaired. We further show that concomitant changes in p50 (oxygen partial pressure for 50% hemoglobin saturation), only 5 mmHg in the case of late-stage CM C57BL/6J mice, and O2 diffusion result in insufficient O2 transport by the pial microcirculation, and that both these changes are required for late-stage disease. In summary, we found impaired O2 transport and O2 affinity in late-stage ECM, but only the former in either early-stage ECM and ECM-resistant strains.

3.
Med Eng Phys ; 116: 103987, 2023 06.
Article En | MEDLINE | ID: mdl-37230699

Direct measurement of cardiac pressure-volume (PV) relationships is the gold standard for assessment of ventricular hemodynamics, but few innovations have been made to "multi-beat" PV analysis beyond traditional signal processing. The Prony method solves the signal recovery problem with a series of dampened exponentials or sinusoids. It achieves this by extracting the amplitude, frequency, dampening, and phase of each component. Since its inception, application of the Prony method to biologic and medical signal has demonstrated a relative degree of success, as a series of dampened complex sinusoids easily generalizes to multifaceted physiological processes. In cardiovascular physiology, the Prony analysis has been used to determine fatal arrythmia from electrocardiogram signals. However, application of the Prony method to simple left ventricular function based on pressure and volume analysis is absent. We have developed a new pipeline for analysis of pressure volume signals recorded from the left ventricle. We propose fitting pressure-volume data from cardiac catheterization to the Prony method for pole extraction and quantification of the transfer function. We implemented the Prony algorithm using open-source Python packages and analyzed the pressure and volume signals before and after severe hemorrhagic shock, and after resuscitation with stored blood. Each animal (n = 6 per group) underwent a 50% hemorrhage to induce hypovolemic shock, which was maintained for 30 min, and resuscitated with 3-week-old stored RBCs until 90% baseline blood pressure was achieved. Pressure-volume catheterization data used for Prony analysis were 1 s in length, sampled at 1000 Hz, and acquired at the time of hypovolemic shock, 15 and 30 min after induction of hypovolemic shock, and 10, 30, and 60 min after volume resuscitation. We next assessed the complex poles from both pressure and volume waveforms. To quantify deviation from the unit circle, which represents deviation from a Fourier series, we counted the number of poles at least 0.2 radial units away from it. We found a significant decrease in the number of poles after shock (p = 0.0072 vs. baseline) and after resuscitation (p = 0.0091 vs. baseline). No differences were observed in this metric pre and post volume resuscitation (p = 0.2956). We next found a composite transfer function using the Prony fits between the pressure and volume waveforms and found differences in both the magnitude and phase Bode plots at baseline, during shock, and after resuscitation. In summary, our implementation of the Prony analysis shows meaningful physiologic differences after shock and resuscitation and allows for future applications to broader physiological and pathophysiological conditions.


Heart Ventricles , Shock, Hemorrhagic , Animals , Hemodynamics , Resuscitation , Ventricular Function, Left
4.
Am J Med Sci ; 364(3): 251-256, 2022 09.
Article En | MEDLINE | ID: mdl-35469768

Infection with COVID-19 has resulted in over 276,000 deaths in the United States and over 1.5 million deaths globally, with upwards of 15% of patients requiring hospitalization. Severe COVID-19 infection is, in essence, a microvascular disease. This contention has been emphasized throughout the course of the pandemic, particularly due to the clinical manifestation of severe infection. In fact, it has been hypothesized and shown in particular instances that microvascular function is a significant prognosticator for morbidity and mortality. Initially thought to be isolated to the pulmonary system and resulting in ARDS, patients with COVID-19 have been observed to have acute cardiac, renal, and thrombolytic complications. Therefore, severe COVID-19 is a vascular disease that has systemic implications. The objective of this review is to provide a mechanistic background for the microvascular nature of severe COVID-19 infection, with a particular emphasis on dysfunction of the endothelial glycocalyx and nitric oxide mediated pathogenesis.


COVID-19 , COVID-19/complications , Humans , Inflammation , Nitric Oxide , Pandemics
5.
Biomed Pharmacother ; 148: 112705, 2022 Apr.
Article En | MEDLINE | ID: mdl-35168074

Acute respiratory distress syndrome (ARDS) is a condition hallmarked by high permeability pulmonary edema and hypoxemic respiratory failure and is associated with high mortality. Current treatment protocols rely on improving O2 delivery, decreasing O2 consumption, and treating the underlying cause of the initial insult. In this study, we used a small rodent model of ARDS, where we induced lung injury with inhalation of lipopolysaccharide (LPS). We investigated three different treatments, namely inhaled NO at 70 ppm, inhaled NO at 140 ppm, and NO-np (10 mg/mL), compared with untreated rodents 72 h after initial insult. Concurrent with treatment, the fraction of inspired O2 was increased after 30 min from 21% to 40% and finally to 60%. At an FiO2 of 60% and 72 h post induction of ARDS, NO-np treated mice had an arterial PO2 (PaO2) of 142 ± 9 mmHg, higher than mice treated with inhaled NO at 70 ppm (87 ± 5 mmHg, p = 8.4 × 10-8) and inhaled NO at 140 ppm (107 ± 6 mmHg, p = 6.1 × 10-6). Neutrophils in both the periphery (1.6 × 105 ± 0.4 × 105 cells) and bronchoalveolar lavage fluid (BALF; 2.7 × 105 ± 0.8 × 105 cells) were reduced in NO-np treated mice compared to mice treated with inhaled NO at 70 ppm (p = 0.0097, 2.4 × 105 ± 0.5 × 105 cells for periphery, p = 0.0075, 3.8 × 105 ± 0.8 × 105 cells for BALF). In summary, we found that treatment with NO-np improved arterial PO2 at a high FiO2 compared to inhaled NO alone and NO-np reduced both circulating and pulmonary interstitial neutrophil count, while inhaled NO did not. Future studies should aim to elucidate the precise mechanisms behind how NO-np mediate neutrophilic inflammation in ARDS.


Nanoparticles , Respiratory Distress Syndrome , Administration, Inhalation , Animals , Disease Models, Animal , Inflammation/drug therapy , Mice , Nitric Oxide , Respiratory Distress Syndrome/drug therapy
6.
ASAIO J ; 68(7): 881-889, 2022 07 01.
Article En | MEDLINE | ID: mdl-35067580

Extracorporeal circulation (ECC) procedures, such as cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO), take over the function of one or more organs, providing clinicians time to treat underlying pathophysiological conditions. ECMO and CPB carry significant mortality rates for patients, despite prior decades of research focused on the resulting failure of critical organs. Since the focus of these procedures is to support blood flow and provide oxygen-rich blood to tissues, a shift in research toward the effects of ECMO and CPB on the microcirculation is warranted. Along with provoking systemic responses, both procedures disrupt the integrity of red blood cells, causing release of hemoglobin (Hb) from excessive foreign surface contact and mechanical stresses. The effects of hemolysis are especially pronounced in the microcirculation, where plasma Hb leads to nitric oxide scavenging, oxidization, formation of reactive oxygen species, and inflammatory responses. A limited number of studies have investigated the implications of ECMO in the microcirculation, but more work is needed to minimize ECMO-induced reduction of microcirculatory perfusion and consequently oxygenation. The following review presents existing information on the implications of ECMO and CPB on microvascular function and proposes future studies to understand and leverage key mechanisms to improve patient outcomes.


Extracorporeal Circulation , Extracorporeal Membrane Oxygenation , Cardiopulmonary Bypass/adverse effects , Cardiopulmonary Bypass/methods , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Microcirculation , Perfusion
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article En | MEDLINE | ID: mdl-33946824

Red blood cells (RBCs) serve a variety of functions beyond mere oxygen transport both in health and pathology. Notably, RRx-001, a minimally toxic pleiotropic anticancer agent with macrophage activating and vascular normalization properties currently in Phase III trials, induces modification to RBCs which could promote vascular adhesion similar to sickle cells. This study assessed whether RBCs exposed to RRx-001 adhere to the tumor microvasculature and whether this adhesion alters tumor viability. We next investigated the biomechanics of RBC adhesion in the context of local inflammatory cytokines after treatment with RRx-001 as a potential mechanism for preferential tumor aggregation. Human HEP-G2 and HT-29 tumor cells were subcutaneously implanted into nu/nu mice and were infused with RRx-001-treated and Technetium-99m (99mTc)-labeled blood. RBC adhesion was quantified in an in vitro human umbilical vein endothelial cell (HUVEC) assay under both normoxic and hypoxic conditions with administration of either lipopolysaccharide (LPS) or Tumor necrosis alpha (TNFα) to mimic the known inflammation in the tumor microenvironment. One hour following administration of 99mTc labeled RBCs treated with 10 mg/kg RRx-001, we observed an approximate 2.0-fold and 1.5-fold increase in 99mTc-labeled RBCs compared to vehicle control in HEPG2 and HT-29 tumor models, respectively. Furthermore, we observed an approximate 40% and 36% decrease in HEP-G2 and HT-29 tumor weight, respectively, following treatment with RRx-001. To quantify RBC adhesive potential, we determined τ50, or the shear stress required for 50% disassociation of RBCs from HUVECs. After administration of TNF-α under normoxia, τ50 was determined to be 4.5 dynes/cm2 (95% CI: 4.3-4.7 dynes/cm2) for RBCs treated with 10 µM RRx-001, which was significantly different (p < 0.05) from τ50 in the absence of treatment. Under hypoxic conditions, the difference of τ50 with (4.8 dynes/cm2; 95% CI: 4.6-5.1 dynes/cm2) and without (2.6 dynes/cm2; 95% CI: 2.4-2.8 dynes/cm2) 10 µM RRx-001 treatment was exacerbated (p = 0.05). In conclusion, we demonstrated that RBCs treated with RRx-001 preferentially aggregate in HEP-G2 and HT-29 tumors, likely due to interactions between RRx-001 and cysteine residues within RBCs. Furthermore, RRx-001 treated RBCs demonstrated increased adhesive potential to endothelial cells upon introduction of TNF-α and hypoxia suggesting that RRx-001 may induce preferential adhesion in the tumor but not in other tissues with endothelial dysfunction due to conditions prevalent in older cancer patients such as heart disease or diabetic vasculopathy.


Antineoplastic Agents/pharmacology , Azetidines/pharmacology , Endothelial Cells/cytology , Erythrocyte Membrane/drug effects , Nitro Compounds/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Azetidines/therapeutic use , Cell Adhesion/drug effects , Cell Hypoxia , Cysteine/chemistry , Cytokines/metabolism , Endothelial Cells/chemistry , Erythrocyte Aggregation/drug effects , Erythrocyte Membrane/chemistry , HT29 Cells/transplantation , Hep G2 Cells/transplantation , Human Umbilical Vein Endothelial Cells , Humans , Lipopolysaccharides/pharmacology , Membrane Lipids/biosynthesis , Mice , Mice, Nude , Neoplasms/blood supply , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Nitro Compounds/therapeutic use , Phosphatidylserines/biosynthesis , Receptors, Cell Surface/biosynthesis , Shear Strength , Tumor Microenvironment , Tumor Necrosis Factor-alpha/pharmacology
8.
Physiol Rep ; 9(5): e14783, 2021 03.
Article En | MEDLINE | ID: mdl-33661575

Microvascular fluid exchange is primarily dependent on Starling forces and both the active and passive myogenic response of arterioles and post-capillary venules. Arterioles are classically considered resistance vessels, while venules are considered capacitance vessels with high distensibility and low tonic sympathetic stimulation at rest. However, few studies have investigated the effects of modulating interstitial hydrostatic pressure, particularly in the context of hemorrhagic shock. The objective of this study was to investigate the mechanics of arterioles and functional capillary density (FCD) during application of negative tissue interstitial pressure after 40% total blood volume hemorrhagic shock. In this study, we characterized systemic and microcirculatory hemodynamic parameters, including FCD, in hamsters instrumented with a dorsal window chamber and a custom-designed negative pressure application device via intravital microscopy. In large arterioles, application of negative pressure after hemorrhagic shock resulted in a 13 ± 11% decrease in flow compared with only a 7 ± 9% decrease in flow after hemorrhagic shock alone after 90 minutes. In post-capillary venules, however, application of negative pressure after hemorrhagic shock resulted in a 31 ± 4% decrease in flow compared with only an 8 ± 5% decrease in flow after hemorrhagic shock alone after 90 minutes. Normalized FCD was observed to significantly improve after application of negative pressure after hemorrhagic shock (0.66 ± 0.02) compared to hemorrhagic shock without application of negative pressure (0.50 ± 0.04). Our study demonstrates that application of negative pressure acutely improves FCD during hemorrhagic shock, though it does not normalize FCD. These results suggest that by increasing the hydrostatic pressure gradient between the microvasculature and interstitium, microvascular perfusion can be transiently restored in the absence of volume resuscitation. This study has significant clinical implications, particularly in negative pressure wound therapy, and offers an alternative mechanism to improve microvascular perfusion during hypovolemic shock.


Capillaries/physiology , Microcirculation/physiology , Microvessels/physiopathology , Shock, Hemorrhagic/physiopathology , Animals , Cricetinae , Male , Oxygen/blood , Resuscitation/methods
9.
Front Physiol ; 10: 1562, 2019.
Article En | MEDLINE | ID: mdl-32038273

The mechanical properties and deformability of Red Blood Cells (RBCs) are important determinants of blood rheology and microvascular hemodynamics. The objective of this study is to quantify the mechanical properties and wall shear stress experienced by the RBC membrane during capillary plug flow in vivo utilizing high speed video recording from intravital microscopy, biomechanical modeling, and computational methods. Capillaries were imaged in the rat cremaster muscle pre- and post-RBC transfusion of stored RBCs for 2-weeks. RBC membrane contours were extracted utilizing image processing and parametrized. RBC parameterizations were used to determine updated deformation gradient and Lagrangian Green strain tensors for each point along the parametrization and for each frame during plug flow. The updated Lagrangian Green strain and Displacement Gradient tensors were numerically fit to the Navier-Lame equations along the parameterized boundary to determined Lame's constants. Mechanical properties and wall shear stress were determined before and transfusion, were grouped in three populations of erythrocytes: native cells (NC) or circulating cells before transfusion, and two distinct population of cells after transfusion with stored cells (SC1 and SC2). The distinction, between the heterogeneous populations of cells present after the transfusion, SC1 and SC2, was obtained through principle component analysis (PCA) of the mechanical properties along the membrane. Cells with the first two principle components within 3 standard deviations of the mean, were labeled as SC1, and those with the first two principle components greater than 3 standard deviations from the mean were labeled as SC2. The calculated shear modulus average was 1.1±0.2, 0.90±0.15, and 12 ± 8 MPa for NC, SC1, and SC2, respectively. The calculated young's modulus average was 3.3±0.6, 2.6±0.4, and 32±20 MPa for NC, SC1, and SC2, respectively. o our knowledge, the methods presented here are the first estimation of the erythrocyte mechanical properties and shear stress in vivo during capillary plug flow. In summary, the methods introduced in this study may provide a new avenue of investigation of erythrocyte mechanics in the context of hematologic conditions that adversely affect erythrocyte mechanical properties.

...