Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heart Rhythm ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019387

RESUMEN

BACKGROUND: Aging is a major risk factor for atrial fibrillation (AF); however, not all individuals age at the same rate. Frailty, which is a measure of susceptibility to adverse health outcomes, can be quantified with a frailty index (FI). OBJECTIVE: This study aimed to determine the effects of angiotensin-converting enzyme (ACE) inhibition on AF and atrial remodeling in aging and frail mice. METHODS: Aging mice were treated with the ACE inhibitor enalapril for 6 months beginning at 16.5 months of age and frailty was quantified. AF susceptibility and atrial structure and function were assessed by intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, patch clamping in isolated atrial myocytes, and histology and molecular biology in atrial tissues. RESULTS: Enalapril attenuated frailty in aging mice with larger effects in females. AF susceptibility was increased in aging mice but attenuated by enalapril. AF susceptibility and duration also increased as a function of FI score. P-wave duration was increased and atrial conduction velocity was reduced in aging mice and improved after enalapril treatment. Furthermore, P-wave duration and atrial conduction velocity were strongly correlated with FI score. Atrial action potential upstroke velocity (Vmax) and Na+ current (INa) were reduced whereas atrial fibrosis was increased in aging mice. Action potential Vmax, INa, and fibrosis were improved by enalapril and also correlated with FI scores. CONCLUSION: ACE inhibition with enalapril attenuates frailty and reduces AF susceptibility in aging mice by preventing atrial electrical and structural remodeling.

2.
Circ Arrhythm Electrophysiol ; 16(11): e012199, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37933567

RESUMEN

BACKGROUND: ß-AR (ß-adrenergic receptor) stimulation regulates atrial electrophysiology and Ca2+ homeostasis via cAMP-dependent mechanisms; however, enhanced ß-AR signaling can promote atrial fibrillation (AF). CNP (C-type natriuretic peptide) can also regulate atrial electrophysiology through the activation of NPR-B (natriuretic peptide receptor B) and cGMP-dependent signaling. Nevertheless, the role of NPR-B in regulating atrial electrophysiology, Ca2+ homeostasis, and atrial arrhythmogenesis is incompletely understood. METHODS: Studies were performed using atrial samples from human patients with AF or sinus rhythm and in wild-type and NPR-B-deficient (NPR-B+/-) mice. Studies were conducted in anesthetized mice by intracardiac electrophysiology, in isolated mouse atrial preparations using high-resolution optical mapping, in isolated mouse and human atrial myocytes using patch-clamping and Ca2+ imaging, and in mouse and human atrial tissues using molecular biology. RESULTS: Atrial NPR-B protein levels were reduced in patients with AF, and NPR-B+/- mice were more susceptible to AF. Atrial cGMP levels and PDE2 (phosphodiesterase 2) activity were reduced in NPR-B+/- mice leading to larger increases in atrial cAMP in the presence of the ß-AR agonist isoproterenol. NPR-B+/- mice displayed larger increases in action potential duration and L-type Ca2+ current in the presence of isoproterenol. This resulted in the occurrence of spontaneous sarcoplasmic reticulum Ca2+ release events and delayed afterdepolarizations in NPR-B+/- atrial myocytes. Phosphorylation of the RyR2 (ryanodine receptor) and phospholamban was increased in NPR-B+/- atria in the presence of isoproterenol compared with the wildtypes. C-type natriuretic peptide inhibited isoproterenol-stimulated L-type Ca2+ current through PDE2 in mouse and human atrial myocytes. CONCLUSIONS: NPR-B protects against AF by preventing enhanced atrial responses to ß-adrenergic receptor agonists.


Asunto(s)
Fibrilación Atrial , Humanos , Ratones , Animales , Fibrilación Atrial/prevención & control , Fibrilación Atrial/metabolismo , Isoproterenol/farmacología , Péptido Natriurético Tipo-C/farmacología , Atrios Cardíacos , Miocitos Cardíacos/metabolismo
3.
JACC Basic Transl Sci ; 8(8): 922-936, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37719430

RESUMEN

Atrial fibrillation (AF) is highly prevalent in type 2 diabetes where it increases morbidity and mortality. Glucagon-like peptide (GLP)-1 receptor agonists are used in the treatment of type 2 diabetes (T2DM), but their effects on AF in T2DM are poorly understood. The present study demonstrates type 2 diabetic db/db mice are highly susceptible to AF in association with atrial electrical and structural remodeling. GLP-1, as well as the long-acting GLP-1 analogue liraglutide, reduced AF and prevented atrial remodeling in db/db mice. These data suggest that GLP-1 and related analogues could protect against AF in patients with T2DM.

4.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389950

RESUMEN

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Asunto(s)
Sodio , Testosterona , Ratones , Masculino , Animales , Ranolazina/farmacología , Ranolazina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas , Canales de Sodio/metabolismo , Potenciales de Acción , Envejecimiento
5.
Front Physiol ; 13: 1021807, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388100

RESUMEN

Atrial fibrillation (AF) is associated with electrical and structural remodeling in the atria; however, the regional and temporal progression of atrial remodeling is incompletely understood. The objective of this study was to investigate the regional and temporal progression of atrial remodeling leading to changes in AF susceptibility in angiotensin II (Ang II) mediated hypertension. Mice were infused with Ang II for 3, 10 or 21 days. AF susceptibility and atrial electrophysiology were studied in vivo using intracardiac electrophysiology. Right and left atrial myocyte electrophysiology was studied using patch-clamping. Atrial fibrosis was assessed histologically. P wave duration and atrial effective refractory period increased progressively from 3 to 21 days of Ang II. AF susceptibility tended to be increased at 10 days of Ang II and was elevated at 21 days of Ang II. Left, but not right, atrial AP upstroke velocity and Na+ current were reduced at 10 and 21 days of Ang II. Left atrial action potential (AP) duration increased progressively from 3 to 21 days of Ang II due to reductions in repolarizing K+ current. Right atrial AP prolongation was increased only after 21 days of Ang II. Left and right atrial fibrosis developed progressively from 3 to 21 days, but increases were larger in the left atrium. In conclusion, Ang II mediated atrial electrical and structural remodeling develop earlier and more extensively in the left atrium compared to the right atrium, providing insight into how atrial remodeling leads to enhanced AF susceptibility in Ang II mediated hypertension.

6.
J Gerontol A Biol Sci Med Sci ; 77(5): 902-908, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865023

RESUMEN

Heart rate (HR) is controlled by the sinoatrial node (SAN). SAN dysfunction is highly prevalent in aging; however, not all individuals age at the same rate. Rather, health status during aging is affected by frailty. Natriuretic peptides regulate SAN function in part by activating natriuretic peptide receptor C (NPR-C). The impacts of NPR-C on HR and SAN function in aging and as a function of frailty are unknown. Frailty was measured in aging wild-type and NPR-C knockout (NPR-C-/-) mice using a mouse clinical frailty index (FI). HR and SAN structure and function were investigated using intracardiac electrophysiology in anesthetized mice, high-resolution optical mapping in intact atrial preparations, histology, and molecular biology. NPR-C-/- mice rapidly became frail leading to shortened life span. HR was reduced and SAN recovery time was increased in older versus younger mice, and these changes were exacerbated in NPR-C-/- mice; however, there was substantial variability among age groups and genotypes. HR and SAN recovery time were correlated with FI score and fell along a continuum regardless of age or genotype. Optical mapping demonstrates impairments in SAN function that were also correlated with FI score. SAN fibrosis was increased in aged and NPR-C-/- mice and was graded by FI score. Loss of NPR-C results in accelerated aging and rapid decline in health status in association with impairments in HR and SAN function. Frailty assessment was effective and better able to distinguish aging-dependent changes in SAN function in the setting of shortened life span due to loss of NPR-C.


Asunto(s)
Fragilidad , Nodo Sinoatrial , Anciano , Envejecimiento/fisiología , Animales , Anciano Frágil , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Nodo Sinoatrial/fisiología
7.
Cardiovasc Res ; 118(8): 1917-1931, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34273155

RESUMEN

AIMS: Heart rate (HR) is a critical indicator of cardiac performance that is determined by sinoatrial node (SAN) function and regulation. Natriuretic peptides, including C-type NP (CNP), have been shown to modulate ion channel function in the SAN when applied exogenously. CNP is the only NP that acts as a ligand for natriuretic peptide receptor-B (NPR-B). Despite these properties, the ability of CNP and NPR-B to regulate HR and intrinsic SAN automaticity in vivo, and the mechanisms by which it does so, are incompletely understood. Thus, the objective of this study was to determine the role of NPR-B signalling in regulating HR and SAN function. METHODS AND RESULTS: We have used NPR-B deficient mice (NPR-B+/-) to study HR regulation and SAN function using telemetry in conscious mice, intracardiac electrophysiology in anaesthetized mice, high-resolution optical mapping in isolated SAN preparations, patch-clamping in isolated SAN myocytes, and molecular biology in isolated SAN tissue. These studies demonstrate that NPR-B+/- mice exhibit slow HR, increased corrected SAN recovery time, and slowed SAN conduction. Spontaneous AP firing frequency in isolated SAN myocytes was impaired in NPR-B+/- mice due to reductions in the hyperpolarization activated current (If) and L-type Ca2+ current (ICa,L). If and ICa,L were reduced due to lower cGMP levels and increased hydrolysis of cAMP by phosphodiesterase 3 (PDE3) in the SAN. Inhibiting PDE3 or restoring cGMP signalling via application of 8-Br-cGMP abolished the reductions in cAMP, AP firing, If, and ICa,L, and normalized SAN conduction, in the SAN in NPR-B+/- mice. NPR-B+/- mice did not exhibit changes in SAN fibrosis and showed no evidence of cardiac hypertrophy or changes in ventricular function. CONCLUSIONS: NPR-B plays an essential physiological role in maintaining normal HR and SAN function by modulating ion channel function in SAN myocytes via a cGMP/PDE3/cAMP signalling mechanism.


Asunto(s)
Péptido Natriurético Tipo-C , Receptores del Factor Natriurético Atrial , Nodo Sinoatrial , Animales , GMP Cíclico , Guanilato Ciclasa , Frecuencia Cardíaca , Ratones , Péptido Natriurético Tipo-C/farmacología , Péptidos Natriuréticos , Receptores del Factor Natriurético Atrial/genética
8.
J Am Heart Assoc ; 10(22): e022369, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34726066

RESUMEN

Background Ibrutinib and acalabrutinib are Bruton tyrosine kinase inhibitors used in the treatment of B-cell lymphoproliferative disorders. Ibrutinib is associated with new-onset atrial fibrillation. Cases of sinus bradycardia and sinus arrest have also been reported following ibrutinib treatment. Conversely, acalabrutinib is less arrhythmogenic. The basis for these different effects is unclear. Methods and Results The effects of ibrutinib and acalabrutinib on atrial electrophysiology were investigated in anesthetized mice using intracardiac electrophysiology, in isolated atrial preparations using high-resolution optical mapping, and in isolated atrial and sinoatrial node (SAN) myocytes using patch-clamping. Acute delivery of acalabrutinib did not affect atrial fibrillation susceptibility or other measures of atrial electrophysiology in mice in vivo. Optical mapping demonstrates that ibrutinib dose-dependently impaired atrial and SAN conduction and slowed beating rate. Acalabrutinib had no effect on atrial and SAN conduction or beating rate. In isolated atrial myocytes, ibrutinib reduced action potential upstroke velocity and Na+ current. In contrast, acalabrutinib had no effects on atrial myocyte upstroke velocity or Na+ current. Both drugs increased action potential duration, but these effects were smaller for acalabrutinib compared with ibrutinib and occurred by different mechanisms. In SAN myocytes, ibrutinib impaired spontaneous action potential firing by inhibiting the delayed rectifier K+ current, while acalabrutinib had no effects on SAN myocyte action potential firing. Conclusions Ibrutinib and acalabrutinib have distinct effects on atrial electrophysiology and ion channel function that provide insight into the basis for increased atrial fibrillation susceptibility and SAN dysfunction with ibrutinib, but not with acalabrutinib.


Asunto(s)
Arritmias Cardíacas , Nodo Sinoatrial , Potenciales de Acción , Adenina/análogos & derivados , Animales , Arritmias Cardíacas/inducido químicamente , Fibrilación Atrial/inducido químicamente , Benzamidas , Electrofisiología Cardíaca , Ratones , Miocitos Cardíacos , Piperidinas , Pirazinas
10.
Heart Rhythm ; 18(11): 1999-2008, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34371195

RESUMEN

BACKGROUND: Heart rate variability (HRV) is determined by intrinsic sinoatrial node (SAN) activity and the autonomic nervous system (ANS). HRV is reduced in aging; however, aging is heterogeneous. Frailty, which can be measured using a frailty index (FI), can quantify health status in aging separately from chronological age. OBJECTIVE: The purpose of this study was to investigate the impacts of age and frailty on HRV in mice. METHODS: Frailty was measured in aging mice between 10 and 130 weeks of age. HRV was assessed using time domain, frequency domain, and Poincaré plot analyses in anesthetized mice at baseline and after ANS blockade, as well as in isolated atrial preparations. RESULTS: HRV was reduced in aged mice (90-130 weeks and 50-80 weeks old) compared to younger mice (10-30 weeks old); however, there was substantial variability within age groups. In contrast, HRV was strongly correlated with FI score regardless of chronological age. ANS blockade resulted in reductions in heart rate that were largest in 90- to 130-week-old mice and were correlated with FI score. HRV after ANS blockade or in isolated atrial preparations was increased in aged mice but again showed high variability among age groups. HRV was correlated with FI score after ANS blockade and in isolated atrial preparations. CONCLUSION: HRV is reduced in aging mice in association with a shift in sympathovagal balance and increased intrinsic SAN beating variability; however, HRV is highly variable within age groups. HRV was strongly correlated with frailty, which was able to detect differences in HRV separately from chronological age.


Asunto(s)
Envejecimiento/fisiología , Sistema Nervioso Autónomo/fisiopatología , Fragilidad/fisiopatología , Frecuencia Cardíaca/fisiología , Nodo Sinoatrial/fisiopatología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
11.
Sci Rep ; 11(1): 12465, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127743

RESUMEN

Heart rate (HR) and sinoatrial node (SAN) function are modulated by the autonomic nervous system. HR regulation by the parasympathetic nervous system (PNS) is impaired in diabetes mellitus (DM), which is denoted cardiovascular autonomic neuropathy. Whether blunted PNS effects on HR in type 2 DM are related to impaired responsiveness of the SAN to PNS agonists is unknown. This was investigated in type 2 diabetic db/db mice in vivo and in isolated SAN myocytes. The PNS agonist carbachol (CCh) had a smaller inhibitory effect on HR, while HR recovery time after CCh removal was accelerated in db/db mice. In isolated SAN myocytes CCh reduced spontaneous action potential firing frequency but this effect was reduced in db/db mice due to blunted effects on diastolic depolarization slope and maximum diastolic potential. Impaired effects of CCh occurred due to enhanced desensitization of the acetylcholine-activated K+ current (IKACh) and faster IKACh deactivation. IKACh alterations were reversed by inhibition of regulator of G-protein signaling 4 (RGS4) and by the phospholipid PIP3. SAN expression of RGS4 was increased in db/db mice. Impaired PNS regulation of HR in db/db mice occurs due to reduced responsiveness of SAN myocytes to PNS agonists in association with enhanced RGS4 activity.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Neuropatías Diabéticas/fisiopatología , Frecuencia Cardíaca/fisiología , Proteínas RGS/metabolismo , Nodo Sinoatrial/metabolismo , Animales , Carbacol/farmacología , Agonistas Colinérgicos/farmacología , Diabetes Mellitus Tipo 2/genética , Neuropatías Diabéticas/etiología , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Sistema Nervioso Parasimpático , Proteínas RGS/antagonistas & inhibidores , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/inervación
12.
Heart Rhythm ; 18(1): 118-129, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32911049

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is highly prevalent in diabetes mellitus (DM), yet the basis for this finding is poorly understood. Type 2 DM may be associated with unique patterns of atrial electrical and structural remodeling; however, this has not been investigated in detail. OBJECTIVE: The purpose of this study was to investigate AF susceptibility and atrial electrical and structural remodeling in type 2 diabetic db/db mice. METHODS: AF susceptibility and atrial function were assessed in male and female db/db mice and age-matched wildtype littermates. Electrophysiological studies were conducted in vivo using intracardiac electrophysiology and programmed stimulation. Atrial electrophysiology was also investigated in isolated atrial preparations using high-resolution optical mapping and in isolated atrial myocytes using patch-clamping. Molecular biology studies were performed using quantitative polymerase chain reaction and western blotting. Atrial fibrosis was assessed using histology. RESULTS: db/db mice were highly susceptible to AF in association with reduced atrial conduction velocity, action potential duration prolongation, and increased heterogeneity in repolarization in left and right atria. In db/db mice, atrial K+ currents, including the transient outward current (Ito) and the ultrarapid delayed rectifier current (IKur), were reduced. The reduction in Ito occurred in association with reductions in Kcnd2 mRNA expression and KV4.2 protein levels. The reduction in IKur was not related to gene or protein expression changes. Interstitial atrial fibrosis was increased in db/db mice. CONCLUSION: Our study demonstrates that increased susceptibility to AF in db/db mice occurs in association with impaired electrical conduction as well as electrical and structural remodeling of the atria.


Asunto(s)
Fibrilación Atrial/fisiopatología , Remodelación Atrial/fisiología , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/complicaciones , Atrios Cardíacos/fisiopatología , Miocitos Cardíacos/metabolismo , Canales de Potasio/metabolismo , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Masculino , Ratones , Ratones Endogámicos , Miocitos Cardíacos/patología , Imagen Óptica
13.
Proc Natl Acad Sci U S A ; 117(14): 7990-8000, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198206

RESUMEN

Atrial fibrillation (AF) is prevalent in diabetes mellitus (DM); however, the basis for this is unknown. This study investigated AF susceptibility and atrial electrophysiology in type 1 diabetic Akita mice using in vivo intracardiac electrophysiology, high-resolution optical mapping in atrial preparations, and patch clamping in isolated atrial myocytes. qPCR and western blotting were used to assess ion channel expression. Akita mice were highly susceptible to AF in association with increased P-wave duration and slowed atrial conduction velocity. In a second model of type 1 DM, mice treated with streptozotocin (STZ) showed a similar increase in susceptibility to AF. Chronic insulin treatment reduced susceptibility and duration of AF and shortened P-wave duration in Akita mice. Atrial action potential (AP) morphology was altered in Akita mice due to a reduction in upstroke velocity and increases in AP duration. In Akita mice, atrial Na+ current (INa) and repolarizing K+ current (IK) carried by voltage gated K+ (Kv1.5) channels were reduced. The reduction in INa occurred in association with reduced expression of SCN5a and voltage gated Na+ (NaV1.5) channels as well as a shift in INa activation kinetics. Insulin potently and selectively increased INa in Akita mice without affecting IK Chronic insulin treatment increased INa in association with increased expression of NaV1.5. Acute insulin also increased INa, although to a smaller extent, due to enhanced insulin signaling via phosphatidylinositol 3,4,5-triphosphate (PIP3). Our study reveals a critical, selective role for insulin in regulating atrial INa, which impacts susceptibility to AF in type 1 DM.


Asunto(s)
Fibrilación Atrial/metabolismo , Remodelación Atrial/fisiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Insulina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Remodelación Atrial/inmunología , Células Cultivadas , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Atrios Cardíacos/citología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Humanos , Insulina/administración & dosificación , Insulina/genética , Canal de Potasio Kv1.5/metabolismo , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Potasio/metabolismo , Cultivo Primario de Células , Sodio/metabolismo , Estreptozocina/toxicidad
14.
Heart Rhythm O2 ; 1(2): 147-159, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34113869

RESUMEN

Atrial fibrillation (AF) is prevalent in common conditions and acquired forms of heart disease, including diabetes mellitus (DM), hypertension, cardiac hypertrophy, and heart failure. AF is also prevalent in aging. Although acquired heart disease is common in aging individuals, age is also an independent risk factor for AF. Importantly, not all individuals age at the same rate. Rather, individuals of the same chronological age can vary in health status from fit to frail. Frailty can be quantified using a frailty index, which can be used to assess heterogeneity in individuals of the same chronological age. AF is thought to occur in association with electrical remodeling due to changes in ion channel expression or function as well as structural remodeling due to fibrosis, myocyte hypertrophy, or adiposity. These forms of remodeling can lead to triggered activity and electrical re-entry, which are fundamental mechanisms of AF initiation and maintenance. Nevertheless, the underlying determinants of electrical and structural remodeling are distinct in different conditions and disease states. In this focused review, we consider the factors leading to atrial electrical and structural remodeling in human patients and animal models of acquired cardiovascular disease or associated risk factors. Our goal is to identify similarities and differences in the cellular and molecular bases for atrial electrical and structural remodeling in conditions including DM, hypertension, hypertrophy, heart failure, aging, and frailty.

15.
J Vis Exp ; (149)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31403612

RESUMEN

The electrophysiological properties of atrial myocytes importantly affect overall cardiac function. Alterations in the underlying ionic currents responsible for the action potential can cause pro-arrhythmic substrates that underlie arrhythmias, such as atrial fibrillation, which are highly prevalent in many conditions and disease states. Isolating adult mouse atrial cardiomyocytes for use in patch-clamp experiments has greatly advanced our knowledge and understanding of the cellular electrophysiology in the healthy atrial myocardium and in the setting of atrial pathophysiology. In addition, studies using genetic mouse models have elucidated the role of a vast array of proteins in regulating atrial electrophysiology. Here we provide a detailed protocol for the isolation of cardiomyocytes from the atrial appendages of adult mice using a combination of enzymatic digestion and mechanical dissociation of these tissues. This approach consistently and reliably yields isolated atrial cardiomyocytes that can then be used to characterize cellular electrophysiology by measuring action potentials and ionic currents in patch-clamp experiments under a number of experimental conditions.


Asunto(s)
Separación Celular/métodos , Atrios Cardíacos/citología , Miocitos Cardíacos/citología , Animales , Ratones , Miocitos Cardíacos/fisiología
16.
Circ Arrhythm Electrophysiol ; 12(1): e006863, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30636477

RESUMEN

BACKGROUND: Atrial fibrillation (AF) commonly occurs in hypertension and in association with elevated Ang II (angiotensin II) levels. The specific mechanisms underlying Ang II-mediated AF are unclear, and interventions to prevent the effects of Ang II are lacking. NPs (natriuretic peptides), which elicit their effects through specific NP receptors, including NPR-C (natriuretic peptide receptor-C), are cardioprotective hormones that affect cardiac structure and function. METHODS: This study used wild-type and NPR-C knockout (NPR-C-/-) mice to investigate the effects of Ang II (3 mg/kg per day for 3 weeks) on AF susceptibility and atrial function using in vivo electrophysiology, high-resolution optical mapping, patch clamping, and molecular biology. In some experiments, wild-type mice were cotreated with Ang II and the NPR-C agonist cANF (0.07-0.14 mg/kg per day) for 3 weeks. RESULTS: In wild-type mice, Ang II increased susceptibility to AF in association with a prolongation of P-wave duration, increased atrial refractory period, and slowed atrial conduction. These effects were exacerbated in Ang II-treated NPR-C-/- mice. Ang II prolonged action potential duration and reduced action potential upstroke velocity (Vmax). These effects were greater in left atrial myocytes from Ang II-treated NPR-C-/- mice. Ang II also increased fibrosis in both atria in wild-type mice, whereas Ang II-treated NPR-C-/- mice exhibited substantially higher fibrosis throughout the atria. Fibrotic responses were associated with changes in expression of profibrotic genes, including TGFß and TIMP1. Cotreating wild-type mice with Ang II and the NPR-C agonist cANF dose dependently reduced AF inducibility by preventing some of the Ang II-induced changes in atrial myocyte electrophysiology and preventing fibrosis throughout the atria. CONCLUSIONS: NPR-C may represent a new target for the prevention of Ang II-induced AF via protective effects on atrial electrical and structural remodeling.


Asunto(s)
Angiotensina II , Fibrilación Atrial/metabolismo , Remodelación Atrial , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Potenciales de Acción , Animales , Fibrilación Atrial/inducido químicamente , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis , Atrios Cardíacos/fisiopatología , Frecuencia Cardíaca , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Receptores del Factor Natriurético Atrial/deficiencia , Receptores del Factor Natriurético Atrial/genética , Factores de Tiempo
17.
J Mol Cell Cardiol ; 124: 12-25, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30273558

RESUMEN

Atrial fibrillation (AF) is prevalent in hypertension and elevated angiotensin II (Ang II); however, the mechanisms by which Ang II leads to AF are poorly understood. Here, we investigated the basis for this in mice treated with Ang II or saline for 3 weeks. Ang II treatment increased susceptibility to AF compared to saline controls in association with increases in P wave duration and atrial effective refractory period, as well as reductions in right and left atrial conduction velocity. Patch-clamp studies demonstrate that action potential (AP) duration was prolonged in right atrial myocytes from Ang II treated mice in association with a reduction in repolarizing K+ currents. In contrast, APs in left atrial myocytes from Ang II treated mice showed reductions in upstroke velocity and overshoot, as well as greater prolongations in AP duration. Ang II reduced Na+ current (INa) in the left, but not the right atrium. This reduction in INa was reversible following inhibition of protein kinase C (PKC) and PKCα expression was increased selectively in the left atrium in Ang II treated mice. The transient outward K+ current (Ito) showed larger reductions in the left atrium in association with a shift in the voltage dependence of activation. Finally, Ang II caused fibrosis throughout the atria in association with changes in collagen expression and regulators of the extracellular matrix. This study demonstrates that hypertension and elevated Ang II cause distinct patterns of electrical and structural remodeling in the right and left atria that collectively create a substrate for AF.


Asunto(s)
Potenciales de Acción , Angiotensina II/metabolismo , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Remodelación Atrial , Angiotensina II/farmacología , Animales , Biomarcadores , Presión Sanguínea , Ecocardiografía , Electrocardiografía , Inmunohistoquímica , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo
18.
JACC Basic Transl Sci ; 3(6): 824-843, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30623142

RESUMEN

Sinoatrial node (SAN) disease mechanisms are poorly understood, and therapeutic options are limited. Natriuretic peptide(s) (NP) are cardioprotective hormones whose effects can be mediated partly by the NP receptor C (NPR-C). We investigated the role of NPR-C in angiotensin II (Ang II)-mediated SAN disease in mice. Ang II caused SAN disease due to impaired electrical activity in SAN myocytes and increased SAN fibrosis. Strikingly, Ang II treatment in NPR-C-/- mice worsened SAN disease, whereas co-treatment of wild-type mice with Ang II and a selective NPR-C agonist (cANF) prevented SAN dysfunction. NPR-C may represent a new target to protect against the development of Ang II-induced SAN disease.

19.
Sci Rep ; 7: 44336, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290548

RESUMEN

Atrial fibrillation (AF) is prevalent in aging populations; however not all individuals age at the same rate. Instead, individuals of the same chronological age can vary in health status from fit to frail. Our objective was to determine the impacts of age and frailty on atrial function and arrhythmogenesis in mice using a frailty index (FI). Aged mice were more frail and demonstrated longer lasting AF compared to young mice. Consistent with this, aged mice showed longer P wave duration and PR intervals; however, both parameters showed substantial variability suggesting differences in health status among mice of similar chronological age. In agreement with this, P wave duration and PR interval were highly correlated with FI score. High resolution optical mapping of the atria demonstrated reduced conduction velocity and action potential duration in aged hearts that were also graded by FI score. Furthermore, aged mice had increased interstitial fibrosis along with changes in regulators of extracellular matrix remodelling, which also correlated with frailty. These experiments demonstrate that aging results in changes in atrial structure and function that create a substrate for atrial arrhythmias. Importantly, these changes were heterogeneous due to differences in health status, which could be identified using an FI.


Asunto(s)
Envejecimiento/genética , Fibrilación Atrial/genética , Fragilidad/genética , Atrios Cardíacos/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción/fisiología , Animales , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Biomarcadores/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Fibrosis , Fragilidad/diagnóstico por imagen , Fragilidad/metabolismo , Fragilidad/patología , Expresión Génica , Atrios Cardíacos/diagnóstico por imagen , Atrios Cardíacos/patología , Pruebas de Función Cardíaca , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Índice de Severidad de la Enfermedad , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Imagen de Colorante Sensible al Voltaje
20.
J Physiol ; 594(23): 7105-7126, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27598221

RESUMEN

KEY POINTS: Sinoatrial node (SAN) function declines with age; however, not all individuals age at the same rate and health status can vary from fit to frail. Frailty was quantified in young and aged mice using a non-invasive frailty index so that the impacts of age and frailty on heart rate and SAN function could be assessed. SAN function was impaired in aged mice due to alterations in electrical conduction, changes in SAN action potential morphology and fibrosis in the SAN. Changes in SAN function, electrical conduction, action potential morphology and fibrosis were correlated with, and graded by, frailty. This study shows that mice of the same chronological age have quantifiable differences in health status that impact heart rate and SAN function and that these differences in health status can be identified using our frailty index. ABSTRACT: Sinoatrial node (SAN) dysfunction increases with age, although not all older adults are affected in the same way. This is because people age at different rates and individuals of the same chronological age vary in health status from very fit to very frail. Our objective was to determine the impacts of age and frailty on heart rate (HR) and SAN function using a new model of frailty in ageing mice. Frailty, which was quantified in young and aged mice using a frailty index (FI), was greater in aged vs. young mice. Intracardiac electrophysiology demonstrated that HR was reduced whereas SAN recovery time (SNRT) was prolonged in aged mice; however, both parameters showed heteroscedasticity suggesting differences in health status among mice of similar chronological age. Consistent with this, HR and corrected SNRT were correlated with, and graded by, FI score. Optical mapping of the SAN demonstrated that conduction velocity (CV) was reduced in aged hearts in association with reductions in diastolic depolarization (DD) slope and action potential (AP) duration. In agreement with in vivo results, SAN CV, DD slope and AP durations all correlated with FI score. Finally, SAN dysfunction in aged mice was associated with increased interstitial fibrosis and alterations in expression of matrix metalloproteinases, which also correlated with frailty. These findings demonstrate that age-related SAN dysfunction occurs in association with electrical and structural remodelling and that frailty is a critical determinant of health status of similarly aged animals that correlates with changes in HR and SAN function.


Asunto(s)
Envejecimiento/fisiología , Nodo Sinoatrial/fisiología , Potenciales de Acción , Animales , Fibrosis , Frecuencia Cardíaca , Masculino , Ratones Endogámicos C57BL , Nodo Sinoatrial/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA