Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 68
1.
Article En | MEDLINE | ID: mdl-38736023

UV-B radiation can substantially impact plant growth. To study UV-B effects, broadband UV-B tubes are commonly used. Apart from UV-B, such tubes also emit UV-A wavelengths. This study aimed to distinguish effects of different UV-B intensities on Arabidopsis thaliana wildtype and UVR8 mutant rosette morphology, from those by accompanying UV-A. UV-A promotes leaf-blade expansion along the proximal-distal, but not the medio-lateral, axis. Consequent increases in blade length: width ratio are associated with increased light capture. However, petiole length is not affected by UV-A exposure. This scenario is distinct from the shade avoidance driven by low red to far-red ratios, whereby leaf blade elongation is impeded but petiole elongation is promoted. Thus, the UV-A mediated elongation response is phenotypically distinct from classical shade avoidance. UV-B exerts inhibitory effects on petiole length, blade length and leaf area, and these effects are mediated by UVR8. Thus, UV-B antagonises aspects of both UV-A mediated elongation and classical shade avoidance. Indeed, this study shows that accompanying UV-A wavelengths can mask effects of UV-B. This may lead to potential underestimates of the magnitude of the UV-B induced morphological response using broadband UV-B tubes.

2.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619007

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Solar Energy , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Climate Change , Environmental Pollution , Weather
3.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Article En | MEDLINE | ID: mdl-38512633

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Plastics , Water Pollutants, Chemical , Humans , Plastics/toxicity , Ecosystem , Ultraviolet Rays , Climate Change , Water Pollutants, Chemical/analysis
4.
Plant Cell Environ ; 47(5): 1769-1781, 2024 May.
Article En | MEDLINE | ID: mdl-38314642

Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.


Plant Stomata , Ultraviolet Rays , Plant Stomata/physiology , Ecosystem , Plant Leaves/physiology , Water/physiology , Plants , Plant Transpiration/physiology
5.
Water Environ Res ; 95(12): e10964, 2023 Dec.
Article En | MEDLINE | ID: mdl-38124406

Duckweed species (Lemnaceae) are suitable for remediation and valorization of agri-feed industry wastewaters and therefore can contribute to a more sustainable, circular economy where waste is a resource. Industrial applications will, however, require space efficient cultivation methods that are not affected by prevailing weather conditions. Here, the development and operation of a multi-tiered duckweed bioreactor is described. The developed prototype bioreactor depicted in this paper is composed of four cultivation layers (1 m2 each) with integrated LED lighting (generating up to 150 µmol m-2  s-1 ), a system of pumps and valves to manage the recirculatory flow (2.5 L min-1 ) of wastewater, and an automatic harvesting system. Using a nutrient poor medium, good growth of the duckweed species Lemna minor was achieved in the bioreactor, and this was matched by strong nutrient depletion from the medium, especially for phosphorus (45-mg total phosphorus [TP] removed per m-2  day-1 ). A fully automatic harvesting arm reliably captured similar amounts of duckweed biomass across multiple harvesting cycles, revealing a future scenario whereby labor and interventions by human operators are minimized. Further developments to advance the system towards fully automated operation will include, for example, the use of specific nutrient sensors to monitor and control medium composition. It is envisaged that multi-tiered, indoor bioreactors can be employed in the agri-feed industry where wastewaters are, in many cases, continuously generated throughout the year and need remediating immediately to avoid costly storage. Given the extensive use of automation technology in conventional wastewater treatment plants, multi-tiered duckweed bioreactors can be realistically integrated within the operating environment of such treatment plants. PRACTITIONER POINTS: Duckweed is suitable for remediation and valorization of agri-feed wastewater. Industrial duckweed applications require space efficient cultivation methods. Development and operation of a multi-tiered duckweed bioreactor is detailed. Flow dynamics and automatic harvesting in the bioreactor are optimized. It is concluded that a multi-tiered bioreactor can be used in industry.


Araceae , Wastewater , Humans , Weather , Phosphorus
6.
Photochem Photobiol Sci ; 22(9): 2189-2204, 2023 Sep.
Article En | MEDLINE | ID: mdl-37270745

Plants are continuously exposed to combinations of abiotic and biotic stressors. While much is known about responses to individual stressors, understanding of plant responses to combinations of stressors is limited. The effects of combined exposure to drought and UV radiation are particularly relevant in the context of climate change. In this study it was explored whether UV-exposure can be used as a tool to prime stress-resistance in plants grown under highly protected culture conditions. It was hypothesised that priming mint plantlets (Mentha spicata L.) with a low-dose of UV irradiance can alleviate the drought effect caused by a change in humidity upon transplanting. Plants were grown for 30 days on agar in sealed tissue culture containers. During this period, plants were exposed to ~ 0.22 W m-2 UV-B for 8 days, using either UV-blocking or UV- transmitting filters. Plants were then transplanted to soil and monitored for a further 7 days. It was found that non-UV exposed mint plants developed necrotic spots on leaves, following transfer to soil, but this was not the case for plants primed with UV. Results showed that UV induced stress resistance is associated with an increase in antioxidant capacity, as well as a decrease in leaf area. UV-induced stress resistance can be beneficial in a horticultural setting, where priming plants with UV-B can be used as a tool in the production of commercial crops.


Stress, Physiological , Ultraviolet Rays , Antioxidants , Droughts , Crops, Agricultural
7.
Photochem Photobiol Sci ; 22(9): 2219-2230, 2023 Sep.
Article En | MEDLINE | ID: mdl-37310640

UV-A- or UV-B-enriched growth light was given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in the expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in the expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursors by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.


Ocimum basilicum , Ocimum basilicum/genetics , Ocimum basilicum/chemistry , Ultraviolet Rays , Plant Leaves/metabolism , Flavonoids/metabolism
8.
R Soc Open Sci ; 10(3): 230090, 2023 Mar.
Article En | MEDLINE | ID: mdl-36968238

Avian vectors, such as ducks, swans and geese, are important dispersers of plant propagules. Until recently, it was thought that small vegetative propagules were reliant on adherence to vectors and are unlikely to survive passage through the avian digestive tract. Here, we conclusively demonstrate that metabolically active angiosperms can survive passage through the digestive tract of a large-bodied waterbird. In addition, we show that extended periods of air exposure for up to 7 days does not inhibit the survival of plantlets embedded in faecal matter. Following air exposure, plantlets (n = 3000) were recovered from 75 faecal samples of mute swans, Cygnus olor, with the survival of 203 plantlets. The number of recovered and surviving plantlets did not significantly differ among durations of air exposure. For recovered plantlets, the long-term viability and clonal reproduction of two duckweed species, Lemna minor and L. gibba, were confirmed following greater than eight months of growth. These data further amplify the key role of waterbirds as vectors for aquatic plant dispersal and demonstrate the internal transport (i.e. endozoochory) of metabolically active plantlets. These data suggest dispersal of vegetative plant propagules by avian vectors is likely to be a common occurrence, underpinning connectivity, range expansion and invasions of some aquatic plants.

9.
Plants (Basel) ; 12(1)2023 Jan 01.
Article En | MEDLINE | ID: mdl-36616308

In this study, growth and ionomic responses of three duckweed species were analyzed, namely Lemna minor, Landoltia punctata, and Spirodela polyrhiza, were exposed for short-term periods to hexavalent chromium or nickel under laboratory conditions. It was found that different duckweed species had distinct ionomic patterns that can change considerably due to metal treatments. The results also show that, because of the stress-induced increase in leaf mass-to-area ratio, the studied species showed different order of metal uptake efficiency if plant area was used as unit of reference instead of the traditional dry weight-based approach. Furthermore, this study revealed that µXRF is applicable in mapping elemental distributions in duckweed fronds. By using this method, we found that within-frond and within-colony compartmentation of metallic ions were strongly metal- and in part species-specific. Analysis of duckweed ionomics is a valuable approach in exploring factors that affect bioaccumulation of trace pollutants by these plants. Apart from remediating industrial effluents, this aspect will gain relevance in food and feed safety when duckweed biomass is produced for nutritional purposes.

10.
Biomolecules ; 12(12)2022 12 14.
Article En | MEDLINE | ID: mdl-36551307

UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.


Arabidopsis Proteins , Arabidopsis , Ultraviolet Rays/adverse effects , Arabidopsis/metabolism , Carotenoids/metabolism , Photosynthesis , Arabidopsis Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism
11.
Plants (Basel) ; 11(22)2022 Nov 09.
Article En | MEDLINE | ID: mdl-36432752

The growth and nutrient uptake capacity of a common duckweed (Lemnaceae) species, Lemna minor "Blarney", on dairy processing wastewater pre-treated by an anaerobic digester (AD-DPW) was explored. L. minor was cultivated in small stationary vessels in a controlled indoor environment, as well as in a semi-outdoor 35 L recirculatory system. The use of AD-DPW as a cultivation medium for L. minor offers a novel approach to dairy wastewater treatment, evolving from the current resource-intensive clean-up of wastewaters to duckweed-based valorisation, simultaneously generating valuable plant biomass and remediating the wastewater.

12.
Plants (Basel) ; 11(22)2022 Nov 15.
Article En | MEDLINE | ID: mdl-36432832

Duckweed (Lemnaceae) can support the development of freshwater aquaculture if used as extractive species in Integrated MultiTrophic Aquaculture (IMTA) systems. These aquatic plants have the advantage of producing protein-rich biomass that has several potential uses. On the contrary, other biological compartments, such as microalgae and bacteria, present in the water and competing with duckweed for light and nutrients cannot be harvested easily from the water. Moreover, as phytoplankton cannot easily be harvested, nutrients are eventually re-released; hence, this compartment does not contribute to the overall water remediation process. In the present study, a mesocosm experiment was designed to quantify the portion of nutrients effectively removed by duckweed in a duckweed-based aquaculture wastewater remediation system. Three tanks were buried next to a pilot-scale IMTA system used for the production of rainbow trout and perch. The tanks received aquaculture effluents from the adjacent system, and 50% of their surface was covered by duckweed. Daily water analyses of samples at the inlet and outlet of the mesocosm allowed quantification of the amount of nutrients removed in total. The portion removed by duckweed was determined by examining the nutrient content in the initial and final biomass. The portion of nutrients removed by other compartments was similarly estimated. The results show that duckweed is responsible for the removal of 31% and 29% of N and P, respectively. Phytoplankton removed 33% and 38% of N and P, respectively, while the biofilm played no major role in nutrient removal. The remainder of the removed nutrients were probably assimilated by bacteria or sedimented. It is speculated that a higher initial duckweed density can limit phytoplankton growth and, therefore, increase the portion of nutrients removed by the duckweed compartment.

13.
Plant Sci ; 325: 111488, 2022 Dec.
Article En | MEDLINE | ID: mdl-36206962

Among abiotic stressors, drought and enhanced ultraviolet radiation (UV) received a lot of attention, because of their potential to impair plant growth. Since drought and UV induce partially similar protective mechanisms, we tested the hypothesis that UV ameliorates the effect of reduced water availability (WA) in selected grass (Holcus mollis and Agrostis capillaris) and forb species (Hypericum maculatum and Rumex acetosa). During 2011-2014, an outdoor manipulation experiment was conducted on a mountain grassland ecosystem (Beskydy Mts; Czech Republic). Lamellar shelters were used to pass (WAamb) or exclude (WA-) incident precipitation in order to simulate reduced water availability (WA). In addition, the lamellas were made from acrylics either transmitting (UVamb) or blocking (UV-) incident UV. Generally, both UV exposure and reduced WA enhanced epidermal UV-screening, while exposure to both factors resulted in less than additive interactions. Although UV radiation increased epidermal UV-screening rather in the grass (up to 29 % in A. capillaris) than forb (up to 12 % in H. maculatum) species and rather in well-watered than reduced WA plants, such acclimation response did not result in significant alleviation of reduced WA effects on gas exchange and morphological parameters. The study contributes to a better understanding of plant responses to complex environmental conditions and will help for successful modelling forecasts of future climate change impacts.


Droughts , Poaceae , Poaceae/physiology , Ultraviolet Rays , Grassland , Ecosystem , Water/physiology , Plants/radiation effects
14.
Plants (Basel) ; 11(16)2022 Aug 21.
Article En | MEDLINE | ID: mdl-36015473

Given its high biomass production, phytoremediation capacity and suitability as a feedstock for animal and human nutrition, duckweeds are valuable multipurpose plants that can underpin circular economy applications. In recent years, the use of duckweeds to mitigate environmental pollution and valorise wastewaters through the removal of excess nitrogen and phosphate from wastewaters has gained considerable scientific attention. However, quantitative data on optimisation of duckweed performance in phytoremediation systems remain scant. In particular, a mechanistical understanding of how physical flows affect duckweed growth and remediation capacity within vertical indoor multi-tiered bioreactors is unknown. Here, effects of flow rate (0.5, 1.5 or 3.0 L min-1) and medium depth (25 mm or 50 mm) on Lemna minor biomass production and phytoremediation capacity were investigated. Results show that flow rates and water depths significantly affect both parameters. L. minor grew best at 1.5 L min-1 maintained at 50 mm, corresponding to a flow velocity of 0.0012 m s-1. The data are interpreted to mean that flow velocities should be low enough not to physically disturb duckweed but still allow for adequate nutrient mixing. The data presented will considerably advance the optimisation of large-scale indoor (multi-tiered, stacked), as well as outdoor (pond, lagoon, canal), duckweed-based remediation of high nutrient wastewaters.

15.
Plant Physiol Biochem ; 183: 36-45, 2022 Jul 15.
Article En | MEDLINE | ID: mdl-35561499

Induction of metabolite biosynthesis and accumulation is one of the most prominent UV-mediated changes in plants, whether during eustress (positive response) or distress (negative response). However, despite evidence suggesting multiple linkages between UV exposure and carotenoid induction in plants, there is no consensus in the literature concerning the direction and/or amplitude of these effects. Here, we compiled publications that characterised the relative impact of UV on the content of individual carotenoids and subjected the created database to a meta-analysis in order to acquire new, fundamental insights in responses of the carotenoid pool to UV exposure. Overall, it was found that violaxanthin was the only carotenoid compound that was significantly and consistently induced as a result of UV exposure. Violaxanthin accumulation was accompanied by a UV dose dependent decrease in antheraxanthin and zeaxanthin. The resulting shift in the state of the xanthophyll cycle would normally occur when plants are exposed to low light and this is associated with increased susceptibility to photoinhibition. Although UV induced violaxanthin accumulation is positively linked to the daily UV dose, the current dataset is too small to establish a link with plant stress, or even experimental growth conditions. In summary, the effects of UV radiation on carotenoids are multifaceted and compound-specific, and there is a need for a systematic analysis of dose-response and wavelength dependencies, as well as of interactive effects with further environmental parameters.


Carotenoids , Ultraviolet Rays , Carotenoids/metabolism , Plants/metabolism , Zeaxanthins
16.
Environ Pollut ; 302: 119059, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35227845

The aquaculture industry is considered a key sector for the supply of high quality, nutritious food. However, growth of the aquaculture sector has been slow, particularly in Europe, and this is amongst others linked to concerns about environmental impacts of this industry. Integrated Multitrophic Aquaculture (IMTA) has been identified as an important technology to sustainably improve freshwater fish production. In IMTA, economically valuable extractive species feed on waste produced by other species, remediating wastewater, and minimising the environmental impact of aquaculture. This study presents quantitative information on the nitrogen and phosphorus removal efficiency of a duckweed-based, pilot, semi-commercial IMTA system. Duckweed species are free-floating freshwater species belonging to the family of Lemnaceae. The aim of this study was to test the potential of duckweed-based IMTA under realistic environmental conditions. Three different approaches were used to assess remediation capacity; 1) assessment of water quality pre and post treatment with duckweed showed that the system can remove 0.78 and 0.38 T y-1 of Total Nitrogen (TN) and Total Phosphorus (TP), respectively 2) based on nitrogen and phosphorus content of newly grown duckweed biomass, it was shown that 1.71 and 0.22 T y-1 of TN and TP can be removed, respectively 3) extrapolation based on laboratory established nitrogen and phosphorus uptake rates determined that 0.88 and 0.08 T y-1 of TN and TP can be removed by the system. There is substantive agreement between the three assessments, and the study confirms that duckweed can maintain good quality water in an IMTA system, while yielding high protein content (21.84 ± 2.45%) biomass. The quantitative data on nitrogen and phosphorus removal inform the design of further IMTA systems, and especially create a scientific basis to determine the balance between aquaculture and extractive species.


Araceae , Wastewater , Animals , Aquaculture , Araceae/metabolism , Biomass , Nitrogen/metabolism , Nutrients , Phosphorus/metabolism
17.
Plant Cell Environ ; 45(1): 41-54, 2022 01.
Article En | MEDLINE | ID: mdl-34778989

Interactions between climate change and UV penetration in the biosphere are resulting in the exposure of plants to new combinations of UV radiation and drought. In theory, the impacts of combinations of UV and drought may be additive, synergistic or antagonistic. Lack of understanding of the impacts of combined treatments creates substantial uncertainties that hamper predictions of future ecological change. Here, we compiled information from 52 publications and analysed the relative impacts of UV and/or drought. Both UV and drought have substantial negative effects on biomass accumulation, plant height, photosynthesis, leaf area and stomatal conductance and transpiration, while increasing stress-associated symptoms such as MDA accumulation and reactive-oxygen-species content. Contents of proline, flavonoids, antioxidants and anthocyanins, associated with plant acclimation, are upregulated both under enhanced UV and drought. In plants exposed to both UV and drought, increases in plant defense responses are less-than-additive, and so are the damage and growth retardation. Less-than-additive effects were observed across field, glasshouse and growth-chamber studies, indicating similar physiological response mechanisms. Induction of a degree of cross-resistance seems the most likely interpretation of the observed less-than-additive responses. The data show that in future climates, the impacts of increases in drought exposure may be lessened by naturally high UV regimes.


Acclimatization , Droughts , Plant Physiological Phenomena , Ultraviolet Rays , Acclimatization/physiology , Biomass , Photosynthesis , Plant Leaves/physiology , Plant Physiological Phenomena/radiation effects , Plant Stomata/physiology , Plant Transpiration/physiology
18.
Plant Physiol ; 187(1): 378-395, 2021 09 04.
Article En | MEDLINE | ID: mdl-34618138

Ultraviolet (UV) light induces a stocky phenotype in many plant species. In this study, we investigate this effect with regard to specific UV wavebands (UV-A or UV-B) and the cause for this dwarfing. UV-A- or UV-B-enrichment of growth light both resulted in a smaller cucumber (Cucumis sativus L.) phenotype, exhibiting decreased stem and petiole lengths and leaf area (LA). Effects were larger in plants grown in UV-B- than in UV-A-enriched light. In plants grown in UV-A-enriched light, decreases in stem and petiole lengths were similar independent of tissue age. In the presence of UV-B radiation, stems and petioles were progressively shorter the younger the tissue. Also, plants grown under UV-A-enriched light significantly reallocated photosynthates from shoot to root and also had thicker leaves with decreased specific LA. Our data therefore imply different morphological plant regulatory mechanisms under UV-A and UV-B radiation. There was no evidence of stress in the UV-exposed plants, neither in photosynthetic parameters, total chlorophyll content, or in accumulation of damaged DNA (cyclobutane pyrimidine dimers). The abscisic acid content of the plants also was consistent with non-stress conditions. Parameters such as total leaf antioxidant activity, leaf adaxial epidermal flavonol content and foliar total UV-absorbing pigment levels revealed successful UV acclimation of the plants. Thus, the UV-induced dwarfing, which displayed different phenotypes depending on UV wavelengths, occurred in healthy cucumber plants, implying a regulatory adjustment as part of the UV acclimation processes involving UV-A and/or UV-B photoreceptors.


Cucumis sativus/radiation effects , Stress, Physiological , Ultraviolet Rays , Cucumis sativus/anatomy & histology , Cucumis sativus/growth & development
19.
Plants (Basel) ; 10(7)2021 Jul 03.
Article En | MEDLINE | ID: mdl-34371569

As part of a circular economy (CE) approach to food production systems, Lemnaceae, i.e., duckweed species, can be used to remediate wastewater due to rapid nutrient assimilation and tolerance of non-optimal growing conditions. Further, given rapid growth rates and high protein content, duckweed species are a valuable biomass. An important consideration for duckweed-mediated remediation is the density at which the plants grow on the surface of the wastewater, i.e., how much of the surface of the medium they cover. Higher duckweed density is known to have a negative effect on duckweed growth, which has implications for the development of duckweed-based remediation systems. In the present study, the effects of density (10-80% plant surface coverage) on Lemna minor growth, chlorophyll fluorescence and nutrient remediation of synthetic dairy processing wastewater were assessed in stationary (100 mL) and re-circulating non-axenic (11.7 L) remediation systems. Overall, L. minor growth, and TN and TP removal rates decreased as density increased. However, in the stationary system, absolute TN and TP removal were greater at higher densities (50-80% coverage). The exact cause of density related growth reduction in duckweed is unclear, especially at densities well below 100% surface coverage. A further experiment comparing duckweed grown at 'low' and 'high' density conditions with the same biomass and media volume conditions, showed that photosynthetic yield, Y(II), is reduced at high density despite the same nutrient availability at both densities, and arguably similar shading. The results demonstrate a negative effect of high density on duckweed growth and nutrient uptake, and point towards signals from neighbouring duckweed colonies as the possible cause.

20.
Plant Cell ; 33(10): 3207-3234, 2021 10 11.
Article En | MEDLINE | ID: mdl-34273173

The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.


Araceae/genetics , Genome, Plant , Genomics
...