Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Xenobiotica ; 54(2): 64-74, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38197324

RESUMEN

Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults. Available treatments have not markedly improved patient survival in the last twenty years. However, genomic investigations have showed that the PI3K pathway is frequently altered in this glioma, making it a potential therapeutic target.Paxalisib is a brain penetrant PI3K/mTOR inhibitor (mouse Kp,uu 0.31) specifically developed for the treatment of GBM. We characterised the preclinical pharmacokinetics and efficacy of paxalisib and predicted its pharmacokinetics and efficacious dose in humans.Plasma protein binding of paxalisib was low, with the fraction unbound ranging from 0.25 to 0.43 across species. The hepatic clearance of paxalisib was predicted to be low in mice, rats, dogs and humans, and high in monkeys, from hepatocytes incubations. The plasma clearance was low in mice, moderate in rats and high in dogs and monkeys. Oral bioavailability ranged from 6% in monkeys to 76% in rats.The parameters estimated from the pharmacokinetic/pharmacodynamic modelling of the efficacy in the subcutaneous U87 xenograft model combined with the human pharmacokinetics profile predicted by PBPK modelling suggested that a dose of 56 mg may be efficacious in humans. Paxalisib is currently tested in Phase III clinical trials.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas , Humanos , Ratas , Ratones , Animales , Perros , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de las Quinasa Fosfoinosítidos-3/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
2.
Microbiome ; 11(1): 47, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894983

RESUMEN

BACKGROUND: IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS: Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS: Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Receptores de Hidrocarburo de Aril/metabolismo , Interleucinas , Indoles , Interleucina-22
3.
Br J Clin Pharmacol ; 89(6): 1903-1907, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36735594

RESUMEN

Endogenous biomarkers of drug transporters are promising tools to evaluate in vivo transporter function and potential alterations in the pharmacokinetics of their substrates. We have previously reported that coproporphyrin I/III captured the weak inhibition of OATP1B transporters by GDC-0810. In this study, we measured plasma concentrations of additional biomarkers, namely fatty acids, bile acids and their sulphate or glucuronide conjugates in the presence and absence of GDC-0810. Concentrations of hexadecanedioate and tetradecanedioate did not increase in the presence of GDC-0810. Among bile acids and their conjugates, glycochenodeoxycholate and glycodeoxycholate 3-O-glucuronides (GCDCA-3G and GDCA-3G) showed Cmax increases with geometric mean ratio (95% confidence interval) of 1.58 (1.13-2.22) and 1.49 (1.21-1.83), consistent with previous reports from low-dose rifampin co-administration and pharmacogenetic studies. These results suggest that GCDCA-3G and GDCA-3G are two more promising biomarkers that may capture weak OATP1B inhibition in addition to coproporphyrin I/III.


Asunto(s)
Glucurónidos , Ácido Glicoquenodesoxicólico , Humanos , Ácido Glicodesoxicólico , Cinamatos , Proteínas de Transporte de Membrana , Interacciones Farmacológicas , Biomarcadores
4.
J Am Soc Mass Spectrom ; 32(8): 2033-2049, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-33826317

RESUMEN

Bile acids (BAs) are biomolecules synthesized in the liver from cholesterol and are constituents of bile. The in-vivo BA pool includes more than 50 known diverse BAs which are unconjugated, amino acid conjugated, sulfated, and glucuronidated metabolites. Hemostasis of bile acids is known to be highly regulated and an interplay between liver metabolism, gut microbiome function, intestinal absorption, and enterohepatic recirculation. Interruption of BA homeostasis has been attributed to several metabolic diseases and drug induced liver injury (DILI), and their use as potential biomarkers is increasingly becoming important. Speciated quantitative and comprehensive profiling of BAs in various biomatrices from humans and preclinical animal species are important to understand their significance and biological function. Consequently, a versatile one single bioanalytical method for BAs is required to accommodate quantitation in a broad range of biomatrices from human and preclinical animal species. Here we report a versatile, comprehensive, and high throughput liquid chromatography-high resolution mass spectrometry (LC-HRMS) targeted metabolomics method for quantitative analysis of 50 different BAs in multiple matrices including human serum, plasma, and urine and plasma and urine of preclinical animal species (rat, rabbit, dog, and monkey). The method has been sufficiently qualified for accuracy, precision, robustness, and ruggedness and addresses the issue of nonspecific binding of bile acids to plastic for urine samples. Application of this method includes comparison for BA analysis between matched plasma and serum samples, human and animal species differences in BA pools, data analysis, and visualization of complex BA data using BA indices or ratios to understand BA biology, metabolism, and transport.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/orina , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Animales , Ácidos y Sales Biliares/metabolismo , Análisis Químico de la Sangre/métodos , Perros , Haplorrinos , Humanos , Conejos , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Suero/química , Sulfatos , Urinálisis/métodos
5.
Mol Pharm ; 16(10): 4230-4240, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31509422

RESUMEN

Interruption of bile acid (BA) homeostasis has been hypothesized for a variety of liver diseases and for drug-induced liver injury (DILI). Consequently, BA is gaining increasing prominence as a potential biomarker. The objective of this work was to evaluate the effect of troglitazone (TZN, associated with severe DILI), pioglitazone (PZN, rarely associated with DILI), and acetylsalicylic acid (ASA, or aspirin, not associated with DILI) on the in vitro BA homeostasis in hepatocytes co-cultured with nonparenchymal cells by monitoring the disposition of 36 BAs. The cells were supplemented with 2.5 µM d4-cholic acid, d4-chenodeoxycholic acid, d4-lithocholic acid, d4-deoxycholic acid, d4-ursodeoxycholic acid, and hyodeoxycholic acid. Concentration-time profiles of BAs were used to determine the area under the curve from the supernatant, lysate, or bile compartments, in the presence or absence of TZN, PZN, or ASA. When applicable, IC50 describing depletion of individual BAs was calculated, or accumulation greater than 200% of dimethyl sulfoxide control was noted. Thiazolidinediones significantly altered the concentration of glycine and sulfate conjugates; however, more BAs were impacted by TZN than with PZN. For commonly shared BAs, TZN exhibited 3- to 13-fold stronger inhibition than PZN. In contrast, no changes were observed with ASA. Modulation of BA disposition by thiazolidinediones and ASA was appropriately differentiated. Particularly for thiazolidinediones, TZN was more potent in interrupting BA homeostasis, and, when also considering its higher dose, may explain differences in their clinical instances of DILI. This is one of the first works which comprehensively evaluated the disposition of primary and secondary BAs along with their metabolites in an in vitro system. Differing degrees of BA homeostasis modulation was observed with various perpetrators associated with varying clinical instances of DILI. These data indicate that in vitro systems such as hepatocyte co-cultures may be a promising tool to gain a detailed insight into how drugs affect BA handling to further probe into the mechanism of DILI related to BA homeostasis.


Asunto(s)
Aspirina/farmacología , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hepatocitos/fisiología , Homeostasis , Pioglitazona/farmacología , Troglitazona/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Aspirina/química , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Técnicas de Cocultivo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Pioglitazona/química , Troglitazona/química
6.
Bioanalysis ; 11(8): 741-753, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30993998

RESUMEN

Aim: Objective of this study is to develop a robust multi-matrix LC-MS/MS for the quantitation of endogenous short-chain fatty acids (SCFA) biomarkers in human plasma and urine. Methods: Developed method utilizes stable isotope-labeled internal standards, high-throughput derivatization procedure for sample preparation and LC-MS/MS analysis using multiple reaction monitoring transitions in positive electrospray ionization mode. Results: Surrogate matrix method was used for quantitation. Accuracy, precision, parallelism, curve linearity, derivatization efficiency, stability and recovery were all evaluated, and the results were well within the acceptable criteria. Conclusion: SCFA levels in human plasma and urine of inflammatory bowel disease patients versus non-disease subjects were quantified and compared by LC-MS/MS.


Asunto(s)
Líquidos Corporales/química , Cromatografía Liquida/métodos , Ácidos Grasos Volátiles/metabolismo , Plasma/química , Espectrometría de Masas en Tándem/métodos , Orina/química , Femenino , Humanos , Masculino
7.
Cell Metab ; 28(3): 383-399.e9, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30043751

RESUMEN

The enzyme glutaminase (GLS1) is currently in clinical trials for oncology, yet there are no clear diagnostic criteria to identify responders. The evaluation of 25 basal breast lines expressing GLS1, predominantly through its splice isoform GAC, demonstrated that only GLS1-dependent basal B lines required it for maintaining de novo glutathione synthesis in addition to mitochondrial bioenergetics. Drug sensitivity profiling of 407 tumor lines with GLS1 and gamma-glutamylcysteine synthetase (GCS) inhibitors revealed a high degree of co-dependency on both enzymes across indications, suggesting that redox balance is a key function of GLS1 in tumors. To leverage these findings, we derived a pan-cancer metabolic signature predictive of GLS1/GCS co-dependency and validated it in vivo using four lung patient-derived xenograft models, revealing the additional requirement for expression of GAC above a threshold (log2RPKM + 1 ≥ 4.5, where RPKM is reads per kilobase per million mapped reads). Analysis of the pan-TCGA dataset with our signature identified multiple indications, including mesenchymal tumors, as putative responders to GLS1 inhibitors.


Asunto(s)
Neoplasias de la Mama , Glutamato-Cisteína Ligasa , Glutaminasa , Neoplasias Pulmonares , Células Madre Mesenquimatosas , Metaboloma , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Ácido Cítrico/metabolismo , Bases de Datos Genéticas , Femenino , Glutamato-Cisteína Ligasa/antagonistas & inhibidores , Glutamato-Cisteína Ligasa/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/metabolismo , Glutatión/metabolismo , Células HEK293 , Humanos , Isoenzimas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Nat Commun ; 9(1): 179, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330524

RESUMEN

NF-κB-inducing kinase (NIK) mediates non-canonical NF-κB signaling downstream of multiple TNF family members, including BAFF, TWEAK, CD40, and OX40, which are implicated in the pathogenesis of systemic lupus erythematosus (SLE). Here, we show that experimental lupus in NZB/W F1 mice can be treated with a highly selective and potent NIK small molecule inhibitor. Both in vitro as well as in vivo, NIK inhibition recapitulates the pharmacological effects of BAFF blockade, which is clinically efficacious in SLE. Furthermore, NIK inhibition also affects T cell parameters in the spleen and proinflammatory gene expression in the kidney, which may be attributable to inhibition of OX40 and TWEAK signaling, respectively. As a consequence, NIK inhibition results in improved survival, reduced renal pathology, and lower proteinuria scores. Collectively, our data suggest that NIK inhibition is a potential therapeutic approach for SLE.


Asunto(s)
Linfocitos B/efectos de los fármacos , Riñón/efectos de los fármacos , Lupus Eritematoso Sistémico/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Linfocitos T/efectos de los fármacos , Animales , Linfocitos B/inmunología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocina TWEAK/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Inflamación/genética , Subunidad p40 de la Interleucina-12/efectos de los fármacos , Subunidad p40 de la Interleucina-12/inmunología , Riñón/inmunología , Riñón/patología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Ratones , Ratones Endogámicos NZB , Terapia Molecular Dirigida , Proteinuria/inmunología , Receptores OX40/metabolismo , Transducción de Señal , Bazo/efectos de los fármacos , Bazo/inmunología , Linfocitos T/inmunología , Quinasa de Factor Nuclear kappa B
9.
Biopharm Drug Dispos ; 37(4): 200-11, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26637499

RESUMEN

1-Aminobenzotriazole (ABT) is a non-isoform specific, time-dependent inhibitor of cytochrome P450 (CYP) enzymes used extensively in preclinical studies to determine the relative contribution of oxidative metabolism. Although ABT has been widely used, the extent and duration of its inhibitory effect is not well understood. The purpose of this study is to characterize ABT inhibition of CYP in rats at both the hepatic and intestinal levels. In vivo studies using midazolam (p.o. and i.v.), as a probe for CYP activity, demonstrated that CYP inhibition was not complete even at the highest dose (300 mg/kg). Additional in vivo studies demonstrated that even at 26 h following ABT administration, there was significant CYP inhibition remaining. In vitro studies, conducted in both rat liver microsomes and rat hepatocytes, confirm that ABT is a time-dependent inhibitor of rat CYP orthologs. However, in rat liver microsomes, there was more than 15% CYP activity remaining following a 60 min preincubation at 2 mm ABT and 5-10% of CYP activity was remaining in rat hepatocytes suspended in rat plasma following a 60 min preincubation at 2 mm ABT. 1-Aminobenzotriazole is a useful tool in elucidating the oxidative component of metabolism in preclinical species; however, conclusions made from the preclinical use of ABT should not operate under the assumption that CYP enzymatic activity is completely inhibited. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Inhibidores Enzimáticos del Citocromo P-450 , Hepatocitos/metabolismo , Microsomas Hepáticos/metabolismo , Midazolam , Triazoles , Administración Intravenosa , Administración Oral , Animales , Inhibidores Enzimáticos del Citocromo P-450/sangre , Inhibidores Enzimáticos del Citocromo P-450/farmacocinética , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Masculino , Midazolam/sangre , Midazolam/farmacocinética , Midazolam/farmacología , Ratas , Triazoles/sangre , Triazoles/farmacocinética , Triazoles/farmacología
10.
Sci Signal ; 8(405): ra122, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26628680

RESUMEN

Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.


Asunto(s)
Asma/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Células Th2/inmunología , Animales , Asma/genética , Asma/patología , Muerte Celular/efectos de los fármacos , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Fosfolipasa C gamma/genética , Fosfolipasa C gamma/inmunología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/inmunología , Células Th2/patología
11.
Bioorg Med Chem Lett ; 23(23): 6331-5, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24138940

RESUMEN

Inhibition of the non-receptor tyrosine kinase ITK, a component of the T-cell receptor signalling cascade, may represent a novel treatment for allergic asthma. Here we report the structure-based optimization of a series of benzothiazole amides that demonstrate sub-nanomolar inhibitory potency against ITK with good cellular activity and kinase selectivity. We also elucidate the binding mode of these inhibitors by solving the X-ray crystal structures of several inhibitor-ITK complexes.


Asunto(s)
Benzotiazoles/química , Benzotiazoles/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Benzotiazoles/síntesis química , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Ratones , Modelos Moleculares , Proteínas Tirosina Quinasas/química , Transducción de Señal , Relación Estructura-Actividad
12.
Rapid Commun Mass Spectrom ; 27(3): 401-8, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23280971

RESUMEN

RATIONALE: Drug discovery samples are routinely analyzed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods on triple quadrupole mass spectrometers employing multiple reaction monitoring (MRM). In order to improve analysis throughput, quantitation of small molecules on a quadrupole time-of-flight (QqTOF) instrument using TOF scan and high-resolution MRM (MRM-HR) modes was evaluated in this study. METHODS: Cassette dosed plasma and brain samples from nine compounds were extracted using a protein precipitation method. Separation was achieved by reversed-phase liquid chromatography. Mass spectrometric analysis was performed using TOF scan and high-resolution MRM approaches on a QqTOF mass spectrometer with turbo-ionspray ionization. Results were compared to those obtained on a triple quadrupole mass spectrometer. RESULTS: The dynamic range varied depending on compounds and instruments and was similar between the MRM on QqQ and full TOF scan mode on QqTOF. Linear or quadratic regression and 1/x(2) weighting were used. Resolution on the QqTOF instrument was around 32000 and mass accuracy was within 4.4 ppm. The MRM-HR method showed better sensitivity compared to the TOF scan method, and was comparable to the MRM on a QqQ mass spectrometer. Assay accuracy was within ±25%. CONCLUSIONS: A TOF scan method allowed the use of the generic method without compound-specific optimization and was an alternative choice for routine high-throughput quantitation of small molecules. The MRM-HR method on the QqTOF showed good sensitivity which was comparable to that obtained by the MRM method on the triple quadrupole mass spectrometer.


Asunto(s)
Cromatografía Liquida/métodos , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masas/métodos , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/sangre , Animales , Química Encefálica , Citalopram/sangre , Citalopram/farmacocinética , Evaluación Preclínica de Medicamentos/métodos , Modelos Lineales , Ratones , Peso Molecular , Sensibilidad y Especificidad , Distribución Tisular , Verapamilo/análisis , Verapamilo/sangre , Verapamilo/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...