Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(1): e0147430, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26808537

RESUMEN

Altered nucleoside levels may be linked to pathogenic signaling through adenosine receptors. We hypothesized that adenosine dysregulation contributes to fibrosis in diabetic kidney disease. Our findings indicate that high glucose levels and experimental diabetes decreased uptake activity through the equilibrative nucleoside transporter 1 (ENT1) in proximal tubule cells. In addition, a correlation between increased plasma content of adenosine and a marker of renal fibrosis in diabetic rats was evidenced. At the cellular level, exposure of HK2 cells to high glucose, TGF-ß and the general adenosine receptor agonist NECA, induced the expression of profibrotic cell activation markers α-SMA and fibronectin. These effects can be avoided by using a selective antagonist of the adenosine A3 receptor subtype in vitro. Furthermore, induction of fibrosis marker α-SMA was prevented by the A3 receptor antagonist in diabetic rat kidneys. In conclusion, we evidenced the contribution of purinergic signaling to renal fibrosis in experimental diabetic nephropathy.


Asunto(s)
Adenosina/metabolismo , Nefropatías Diabéticas/metabolismo , Fibrosis/metabolismo , Túbulos Renales/metabolismo , Transducción de Señal , Animales , Línea Celular , Nefropatías Diabéticas/patología , Células Epiteliales/metabolismo , Humanos , Túbulos Renales/patología , Masculino , Ratas , Ratas Sprague-Dawley
2.
Curr Drug Targets ; 15(10): 931-42, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25174341

RESUMEN

Glioblastoma multiforme (GBM) is the most common glial cell-derived brain tumour, with one of the worst prognoses among all cancers. GBM cells are infiltrative and extremely resistant to radio- and chemotherapy, which inevitably leads to recurrence after surgical resection. These inherent GBM properties are the reasons that patient treatment has not seen major improvements in decades. Studies have consistently shown that glioblastoma stem-like cells (GSCs) are responsible for the tumourigenic properties in the GBM population. In fact, their self-renewal and proliferative potential are required for tumour growth, and their extreme chemoresistance leads to early recurrence of this tumour. Among those mechanisms associated with chemoresistance and having the greatest clinical impact in cancer treatment, are the activities of plasma membrane transporters that extrude antitumour drugs from the cell, thus notably decreasing the pharmacological efficiency of these drugs. The multiple drug resistance associated protein-1 (Mrp1) transporter has been shown to be particularly important in GBM, as inhibition of Mrp1 activity notably chemosensitises cells to antiproliferative drugs. As current therapeutic options for GBM offer only a poor improvement in overall survival rate, alternative strategies for overcoming tumour resistance are urgently sought after. To this end, it is of major clinical relevance to know more about the endogenous modulators that control Mrp1 expression within the pathological environment of the tumour. This review describes the particular properties of glioblastoma cells that overcome multimodal therapy and relapse, with an emphasis on the microenvironmental tumour properties that influence the chemoresistance phenotype to antiproliferative drugs. We also discuss alternative methods of reversal of Mrp1-mediated chemoresistance in these cells by targeting extracellular adenosine production or signalling through particular plasma membrane receptors.


Asunto(s)
Adenosina/metabolismo , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos , Glioblastoma/patología , Células Madre Neoplásicas , Transducción de Señal , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral
3.
Curr Drug Targets ; 14(4): 490-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23316933

RESUMEN

Diabetic nephropathy (DN) continues being the primary cause of chronic hemodialysis and terminal renal disease worldwide. At tissue levels the DN occurs with glomerulopathy affecting the integrity of the filtration barrier and with an extensive glomerular and tubule-interstitial fibrosis. Current available therapeutic approaches have only demonstrated a modest effect on progression of kidney injury. Therefore, more research concerning the pathomechanisms and possible interventions are needed. Interestingly, in the last years it has been documented that DN progresses with growing levels of the nucleoside adenosine. This finding increased the interest in the events controlling the extracellular levels of the nucleoside. While the metabolism of extracellular ATP and cyclic AMP are well recognized sources, evidences regarding the role of the equilibrative nucleoside transporters in controlling adenosine availability and promoting diabetic glomerulopathy have recently acquired a pivotal role. The physiological effects of nucleoside are mediated by the P1 family of adenosine receptors. It has been shown in vivo that the use of an antagonist of the A2B receptor subtype can block the most remarkable early alterations seen in diabetic glomerulopathy. Furthermore, using models of chronic kidney injury it was demonstrated that fibrosis can also be blocked using treatment with the antagonist of A2B receptor subtype. This review highlights these findings that correlate the activity of a low affinity adenosine receptor with an increase in the ligand availability in the pathological state. In addition, we discuss the possible therapeutic interventions of adenosine signaling with regards to DN treatment.


Asunto(s)
Adenosina/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Receptor de Adenosina A2B/metabolismo , Transducción de Señal/efectos de los fármacos , Adenosina/genética , Animales , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Humanos , Receptor de Adenosina A2B/genética , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA