Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 180: 110477, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39003969

RESUMEN

The present paper deals with the preparation and annotation of a surfactin(s) derived from a culture of the endophytic bacterium Bacillus 15 F. The LC-MS analysis of the acetonitrile fraction confirmed the presence of surfactins Leu/Ile7 C15, Leu/Ile7 C14 and Leu/Ile7 C13 with [M+H]+ at m/z 1036.6895, 1022.6741 and 1008.6581, respectively. Various concentrations of the surfactin(s) (hereafter referred to as surfactin-15 F) were used to reduce the adhesion of Staphylococcus epidermidis S61, which served as a model for studying antibiofilm activity on polystyrene surfaces. Incubation of Staphylococcus epidermidis S61 with 62.5 µg/ml of surfactin-15 F resulted in almost complete inhibition of biofilm formation (90.3 ± 3.33 %), and a significant reduction of cell viability (resazurin-based fluorescence was more than 200 times lower). The antiadhesive effect of surfactin-15 F was confirmed by scanning electron microscopy. Surfactin-15 F demonstrated an eradication effect against preformed biofilm, causing severe disruption of Staphylococcus epidermidis S61 biofilm structure and reducing viability. The results suggest that surfactins produced by endophytic bacteria could be an alternative to synthetic products. Surfactin-15 F, used in wound dressings, demonstrated an efficient treatment of the preformed Staphylococcus epidermidis S61 biofilm, and thus having a great potential in medical applications.

2.
Microb Pathog ; 189: 106576, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382626

RESUMEN

Serratia marcescens is commonly noted to be an opportunistic pathogen and is often associated with nosocomial infections. In addition to its high antibiotic resistance, it exhibits a wide range of virulence factors that confer pathogenicity. Targeting quorum sensing (QS) presents a potential therapeutic strategy for treating bacterial infections caused by S. marcescens, as it regulates the expression of various virulence factors. Inhibiting QS can effectively neutralize S. marcescens' bacterial virulence without exerting stress on bacterial growth, facilitating bacterial eradication by the immune system. In this study, the antibacterial and anti-virulence properties of eugenol against Serratia sp. were investigated. Eugenol exhibited inhibitory effects on the growth of Serratia, with a minimal inhibitory concentration (MIC) value of 16.15 mM. At sub-inhibitory concentrations, eugenol also demonstrated antiadhesive and eradication activities by inhibiting biofilm formation. Furthermore, it reduced prodigiosin production and completely inhibited protease production. Additionally, eugenol effectively decreased swimming and swarming motilities in Serratia sp. This study demonstrated through molecular modeling, docking and molecular dynamic that eugenol inhibited biofilm formation and virulence factor production in Serratia by binding to the SmaR receptor and blocking the formation of the HSL-SmaR complex. The binding of eugenol to SmaR modulates biofilm formation and virulence factor production by Serratia sp. These findings highlight the potential of eugenol as a promising agent to combat S. marcescens infections by targeting its virulence factors through quorum sensing inhibition.


Asunto(s)
Percepción de Quorum , Serratia , Biopelículas , Eugenol/farmacología , Serratia marcescens , Factores de Virulencia/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA