Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Sci Rep ; 14(1): 14102, 2024 Jun 19.
Article En | MEDLINE | ID: mdl-38890338

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers. However, theoretical considerations predict both higher and lower trophic position with increasing body size. Nitrogen stable isotope values (δ15N) are increasingly replacing stomach contents or behavioral observations to assess trophic position and it is often assumed that ontogenetic dietary shifts result in higher trophic positions. Intraspecific studies based on δ15N values found a positive relationship between size and inferred trophic position. Here, we use datasets of predatory vertebrate ectotherms (crocodilians, turtles, lizards and fishes) to show that, although there are positive intraspecific relationships between size and δ15N values, relationships between stomach-content-based trophic level (TPdiet) and size are undetectable or negative. As there is usually no single value for 15N trophic discrimination factor (TDF) applicable to a predator species or its prey, estimates of trophic position based on δ15N in ectotherm vertebrates with large size ranges, may be inaccurate and biased. We urge a reconsideration of the sole use of δ15N values to assess trophic position and encourage the combined use of isotopes and stomach contents to assess diet and trophic level.


Body Size , Food Chain , Nitrogen Isotopes , Predatory Behavior , Vertebrates , Animals , Nitrogen Isotopes/analysis , Nitrogen Isotopes/metabolism , Predatory Behavior/physiology , Lizards/physiology , Lizards/metabolism , Fishes/physiology , Gastrointestinal Contents/chemistry , Turtles/physiology , Turtles/metabolism
2.
Sci Rep ; 13(1): 21762, 2023 12 08.
Article En | MEDLINE | ID: mdl-38066199

This study investigated the Zarrin-Gol River ecosystem in Iran to trace organic matter in the food web and evaluate the impact of aquaculture farm effluent using stable isotopes of nitrogen (δ15N) and carbon (δ13C). Using a previously-developed model (Islam 2005), we estimated that a trout farm in the vicinity released 1.4 tons of nitrogen into the river. This was comparable to an estimated total nutrient load of 2.1 tons of nitrogen for the six-month fish-rearing period based on a web-based constituent load estimator (LOADEST). A model estimate of river nitrogen concentration at the time of minimum river discharge (100 L/s) was 2.74 mg/L. Despite relatively high nitrogen loading from the farm, isotope data showed typical food web structure. Several biological groups had elevated δ13C or δ15N values, but there was limited evidence for the entry of organic matter from the trout farm into the food web, with sites above and below trout farms having inconsistent patterns in 15N enrichment. By coupling nitrogen load modeling with stable isotope analysis we showed that stable isotopes might not be effective tracers of organic matter into food webs, depending on surrounding land use and other point sources of nutrients. The Zarrin-Gol River ecosystem, like other basins with high human population density, remains vulnerable to eutrophication in part due to trout farm effluent.


Ecosystem , Nitrogen , Animals , Aquaculture , Carbon Isotopes/analysis , Environmental Monitoring , Isotopes/analysis , Nitrogen/analysis , Nitrogen Isotopes/analysis , Rivers/chemistry , Trout
3.
Chemosphere ; 308(Pt 1): 136236, 2022 Dec.
Article En | MEDLINE | ID: mdl-36057354

Basin land-use interacts with hydrology to deliver chemical contaminants to riverine environments. These chemicals are eventually taken up by aquatic organisms, where they can cause harmful effects. However, knowledge gaps related to the connections between hydrological, chemical, and biological processes currently limit our ability to forecast potential future changes in contaminant concentrations accurately. In this study, concentrations of three pesticide classes (organochlorines, organophosphates, and herbicides) and a standard suite of trace metals were analyzed in the South Saskatchewan River, Canada in 2020 and 2021 in water, sediments, and fishes. Organochlorine pesticides have been banned in Canada since the 1970s, yet there were some detections for methoxychlor and lindane, predominantly in sediment and fish samples, which could be attributed to legacy contamination. Except for malathion and parathion, organophosphate pesticides were scarcely detected in both sampling years in all matrices, and neonicotinoids were below detection in all samples. Conversely, the herbicides 2,4-D and dicamba were detected consistently throughout all locations in water samples for both sampling years. Overall, concentrations were 3 times higher in 2020 when river discharge was ∼2 times higher, suggesting run-off from the surrounding catchment or disturbance of contaminated sediments. Analysis for trace metals revealed that Cu and Zn exceeded sediment quality guidelines in some locations. Mercury concentrations exceeded the guidelines for about 18% of the samples (water and sediment) analyzed. These findings fill gaps in monitoring datasets and highlight key links between hydrology and chemistry that can be further explored in computational models to predict future contaminant trends in freshwater systems.


Herbicides , Hydrocarbons, Chlorinated , Mercury , Parathion , Pesticides , Trace Elements , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Animals , Dicamba , Environmental Monitoring , Fishes , Geologic Sediments/chemistry , Herbicides/analysis , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis , Malathion , Mercury/analysis , Methoxychlor/analysis , Neonicotinoids/analysis , Pesticides/analysis , Rivers/chemistry , Trace Elements/analysis , Water/analysis , Water Pollutants, Chemical/analysis
4.
Biol Lett ; 18(4): 20210676, 2022 04.
Article En | MEDLINE | ID: mdl-35472283

Supporting the recovery of large carnivores is a popular yet challenging endeavour. Estuarine crocodiles in Australia are a large carnivore conservation success story, with the population having extensively recovered from past heavy exploitation. Here, we explored if dietary changes had accompanied this large population recovery by comparing the isotopes δ13C and δ15N in bones of crocodiles sampled 40 to 55 years ago (small population) with bones from contemporary individuals (large population). We found that δ13C and δ15N values were significantly lower in contemporary crocodiles than in the historical cohort, inferring a shift in prey preference away from marine and into terrestrial food webs. We propose that an increase in intraspecific competition within the recovering crocodile population, alongside an increased abundance of feral ungulates occupying the floodplains, may have resulted in the crocodile population shifting to feed predominantly upon terrestrial food sources. The number of feral pigs consumed to sustain and grow crocodile biomass may help suppress pig population growth and increase the flow of terrestrially derived nutrients into aquatic ecosystems. The study highlights the significance of prey availability in contributing to large carnivore population recovery.


Ecosystem , Predatory Behavior , Animals , Diet , Food Chain , Humans , Sus scrofa , Swine
5.
Sci Total Environ ; 833: 155161, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-35421468

Despite a global phase out of some point sources, mercury (Hg) remains elevated in aquatic food webs, posing health risks for fish-eating consumers. Many tropical regions have fast growing organisms, potentially short food chains, and few industrial point sources, suggesting low Hg baselines and low rates of trophic magnification with limited risk to people. Nevertheless, insufficient work on food-web Hg has been undertaken in the tropics and fish consumption is high in some regions. We studied Hg concentrations in fishes from floodplain lakes of the Juruá River, Amazonas, Brazil with three objectives: 1) determine rates of Hg trophic magnification, 2) assess whether Hg concentrations are high enough to impact humans eating fish, and 3) determine whether there are seasonal differences in fish Hg concentrations. A total of 377 fish-muscle samples were collected from 12 floodplain lakes during the low-water (September 2018) and falling-water (June 2019) seasons and analysed for total Hg and stable nitrogen (N) isotopes. The average trophic magnification factor (increase per trophic level) was 10.1 in the low-water season and 5.4 in the falling-water season, both well above the global average for freshwaters. This high rate of trophic magnification, coupled with higher-than-expected Hg concentrations in herbivorous species, led to high concentrations (up to 17.6 ng/g dry weight) in predatory pirarucu and piranha. Nearly 70% of all samples had Hg concentrations above the recommended human-consumption guidelines. Average concentrations were 42% higher in the low-water season than the falling-water season, but differences varied by species. Since Hg concentrations are higher than expected and fish consumption in this region is high, future research should focus on Hg exposure for human populations here and in other tropical-rainforest regions, even in the absence of local point sources of Hg.


Mercury , Water Pollutants, Chemical , Animals , Bioaccumulation , Environmental Monitoring , Fishes , Food Chain , Humans , Lakes , Mercury/analysis , Water/analysis , Water Pollutants, Chemical/analysis
6.
Environ Toxicol Chem ; 40(8): 2269-2281, 2021 08.
Article En | MEDLINE | ID: mdl-33939852

Like many amphibians, wood frog (Lithobates sylvaticus) populations have likely declined or experienced local extirpations as a result of habitat alterations. Despite this, wood frogs are still present and breeding in altered landscapes, like the agricultural Prairie Pothole Region of central Canada, and are exposed to a variety of anthropogenic impacts. As tadpoles, water contamination can have negative effects on growth, development, and immune systems. To investigate the potential effects of agricultural land use on tadpole growth and immune system stress, we used boosted regression trees to model body mass, body condition, and neutrophil to lymphocyte ratios, a measure of immune stress, against 32 variables including water quality, wetland habitat, and landscape-level measures. Developmental stage strongly influenced all 3 endpoints, and body mass was negatively influenced by higher levels of total dissolved solids (>600-700 mg/L) and at the first sign of pesticide detection (>0.01 proportion pesticides detected of those screened). While correlative, these data suggest that tadpoles developing in agricultural environments may experience survival and reproductive disadvantages if they metamorphose at smaller body sizes. Given the potential impacts this can have on adult frogs and frog populations, these results provide an impetus for further field-based investigation into the effects that pesticides, and especially total dissolved solids, may have on tadpoles. Environ Toxicol Chem 2021;40:2269-2281. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Pesticides , Water Pollutants, Chemical , Animals , Anura , Larva , Pesticides/toxicity , Ranidae , Water Pollutants, Chemical/analysis , Wetlands
7.
Aquat Toxicol ; 229: 105658, 2020 Dec.
Article En | MEDLINE | ID: mdl-33099035

In July 2016, a Husky Energy pipeline spilled 225,000 L of diluted heavy crude oil, with a portion of the oil entering the North Saskatchewan River near Maidstone, SK, Canada. This event provided a unique opportunity to assess potential effects of a crude oil constituent (namely polycyclic aromatic hydrocarbons, PAHs) on a possible sensitive indicator of freshwater ecosystem health, the gut microbiota of native fishes. In summer 2017, goldeye (Hiodon alosoides), walleye (Sander vitreus), northern pike (Esox lucius), and shorthead redhorse (Moxostoma macrolepidotum) were collected at six locations upstream and downstream of the spill. Muscle and bile were collected from individual fish for quantification of PAHs and intestinal contents were collected for characterization of the microbial community of the gut. Results suggested that host species is a significant determinant of gut microbiota, with significant differences among the species across sites. Concentrations of PAHs in dorsal muscle were significantly correlated with gut community compositions of walleye, but not of the other fishes. Concentrations of PAHs in muscle were also correlated with abundances of several families of bacteria among fishes. This study represents one of the first to investigate the response of the gut microbiome of wild fishes to chemical stressors.


Fishes/microbiology , Gastrointestinal Microbiome , Petroleum Pollution/analysis , Rivers , Animals , Biotransformation/drug effects , Esocidae/microbiology , Geography , Microbiota/drug effects , Perches/microbiology , Polycyclic Aromatic Hydrocarbons/analysis , Saskatchewan , Seasons , Water Pollutants, Chemical/toxicity
8.
Ecotoxicology ; 29(7): 876-891, 2020 Sep.
Article En | MEDLINE | ID: mdl-32656653

Aerial insectivorous birds such as swallows have been the steepest declining groups of birds in North America over the last 50 years but whether such declines are linked to contaminants has not been examined. We sampled feathers from five species of swallow at multiple locations to assess total mercury [THg] exposure for adults during the non-breeding season, and for juveniles on the breeding grounds. We assessed Hg exposure to juvenile birds in crop- and grass-dominated landscapes to determine if land-use practices influenced feather [THg]. We assayed feathers for stable isotopes (δ2H, δ13C, δ15N) as proxies for relative habitat use and diet to determine their potential influence on feather [THg]. Feather [THg] was highest in adult bank swallows (Riparia riparia) and purple martins (Progne subis) from Saskatchewan and adult cliff swallows (Petrochelidon pyrrhonota) from western regions, indicating differential exposure to Hg on the non-breeding grounds. Juvenile bank, barn (Hirundo rustica) and tree (Tachycineta bicolor) swallows had lower feather [THg] in crop-dominated landscapes than grass-dominated landscapes in Saskatchewan, potentially resulting from lower use of wetland-derived insects due to wetland drainage and intensive agriculture. Feather [THg] was related to juvenile feather stable isotopes for several species, suggesting complex interactions with diet and environmental factors. Many individuals had feather [THg] values >2 µg/g, a threshold at which deleterious effects may occur. Our findings indicate differential Hg exposure among species of swallow, regions and land-uses and highlight the need for additional research to determine dietary and finer-scale land-use impacts on individual species and populations.


Environmental Exposure , Environmental Pollutants/metabolism , Feathers/chemistry , Mercury/metabolism , Swallows/metabolism , Animal Migration , Animals , Canada , Environmental Monitoring , Female , Male , Seasons , Washington
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190639, 2020 08 03.
Article En | MEDLINE | ID: mdl-32536302

Determining the transfer and transformation of organic matter in food webs is a fundamental challenge that has implications for sustainable management of ecosystems. Fatty acids (FA) offer a potential approach for resolving complex diet mixtures of organisms because they provide a suite of molecular tracers. Yet, uncertainties in the degree of their biochemical modification by consumers, due to selective retention or metabolism, have limited their application. Here, we consolidated 316 controlled feeding studies of aquatic ectotherms (fishes and invertebrates) involving 1404 species-diet combinations to assess the degree of trophic modification of FA in muscle tissue. We found a high degree of variability within and among taxa in the %FA in consumer muscle tissue versus %FA in diet regression equations. Most saturated FA had weak relationships with the diet (r2 < 0.30) and shallow slopes (m < 0.30), suggesting a lack of retention in muscle when fed in increasing amounts. Contrarily, several essential FA, including linoleic (18:2n-6) and α-linolenic acid (18:3n-3), exhibited significant relationships with the diet (m > 0.35, r2 > 0.50), suggesting supply limitations and selective retention in muscle by consumers. For all FA, relationships strengthened with increasing taxonomic specificity. We also demonstrated the utility of new correction equations by calculating the potential contributions of approximately 20 prey items to the diet of selected species of generalist fishes using a FA mixing model. Our analyses further reveal how a broad range of fishes and invertebrates convert or store these compounds in muscle tissue to meet physiological needs and point to their power in resolving complex diets in aquatic food webs. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Aquatic Organisms/metabolism , Biomarkers/metabolism , Fatty Acids/metabolism , Fishes/metabolism , Invertebrates/metabolism , Animals , Diet/veterinary
10.
WIREs Water ; 6(6)2019.
Article En | MEDLINE | ID: mdl-31827789

River flows connect people, places, and other forms of life, inspiring and sustaining diverse cultural beliefs, values, and ways of life. The concept of environmental flows provides a framework for improving understanding of relationships between river flows and people, and for supporting those that are mutually beneficial. Nevertheless, most approaches to determining environmental flows remain grounded in the biophysical sciences. The newly revised Brisbane Declaration and Global Action Agenda on Environmental Flows (2018) represents a new phase in environmental flow science and an opportunity to better consider the co-constitution of river flows, ecosystems, and society, and to more explicitly incorporate these relationships into river management. We synthesize understanding of relationships between people and rivers as conceived under the renewed definition of environmental flows. We present case studies from Honduras, India, Canada, New Zealand, and Australia that illustrate multidisciplinary, collaborative efforts where recognizing and meeting diverse flow needs of human populations was central to establishing environmental flow recommendations. We also review a small body of literature to highlight examples of the diversity and interdependencies of human-flow relationships-such as the linkages between river flow and human well-being, spiritual needs, cultural identity, and sense of place-that are typically overlooked when environmental flows are assessed and negotiated. Finally, we call for scientists and water managers to recognize the diversity of ways of knowing, relating to, and utilizing rivers, and to place this recognition at the center of future environmental flow assessments. This article is categorized under: Water and Life > Conservation, Management, and Awareness Human Water > Water Governance Human Water > Water as Imagined and Represented.

11.
Environ Toxicol Chem ; 38(12): 2750-2763, 2019 12.
Article En | MEDLINE | ID: mdl-31546287

Amphibians are declining worldwide, in part because of large-scale degradation of habitat from agriculture and pervasive pathogens. Yet a common North American amphibian, the wood frog (Lithobates sylvaticus), ranges widely and persists in agricultural landscapes. Conventional survey techniques rely on visual encounters and dip-netting efforts, but detectability limits the ability to test for the effects of environmental variables on amphibian habitat suitability. We used environmental DNA to determine the presence of wood frogs and an amphibian pathogen (ranavirus) in Prairie Pothole wetlands and investigated the effects of 32 water quality, wetland habitat, and landscape-level variables on frog presence at sites representing different degrees of agricultural intensity. Several wetland variables influenced wood frog presence, the most influential being those associated with wetland productivity (i.e., nutrients), vegetation buffer width, and proportion of the surrounding landscape that is comprised of other water bodies. Wood frog presence was positively associated with higher dissolved phosphorus (>0.4 mg/L), moderate dissolved nitrogen (0.1-0.2 mg/L), lower chlorophyll a (≤15 µg/L), wider vegetation buffers (≥10 m), and more water on the landscape (≥0.25). These results highlight the effects of environmental factors at multiple scales on the presence of amphibians in this highly modified landscape-namely the importance of maintaining wetland water quality, vegetation buffers, and surrounding habitat heterogeneity. Environ Toxicol Chem 2019;38:2750-2763. © 2019 SETAC.


Anura/physiology , DNA, Environmental/analysis , Wetlands , Agriculture , Animals , Anura/virology , Chlorophyll A/analysis , Phosphorus/analysis , Ranavirus/physiology , Water Quality
12.
Sustain Sci ; 14(3): 771-790, 2019.
Article En | MEDLINE | ID: mdl-31149316

A challenge for transdisciplinary sustainability science is learning how to bridge diverse worldviews among collaborators in respectful ways. A temptation in transdisciplinary work is to focus on improving scientific practices rather than engage research partners in spaces that mutually respect how we learn from each other and set the stage for change. We used the concept of Nicolescu's "Hidden Third" to identify and operationalize this transformative space, because it focused on bridging "objective" and "subjective" worldviews through art. Between 2014 and 2017, we explored the engagement of indigenous peoples from three inland delta regions in Canada and as a team of interdisciplinary scholars and students who worked together to better understand long-term social-ecological change in those regions. In working together, we identified five characteristics associated with respectful, transformative transdisciplinary space. These included (1) establishing an unfiltered safe place where (2) subjective and objective experiences and (3) different world views could come together through (4) interactive and (5) multiple sensory experiences. On the whole, we were more effective in achieving characteristics 2-5-bringing together the subjective and objective experiences, where different worldviews could come together-than in achieving characteristic 1-creating a truly unfiltered and safe space for expression. The novelty of this work is in how we sought to change our own engagement practices to advance sustainability rather than improving scientific techniques. Recommendations for sustainability scientists working in similar contexts are provided.

13.
Chemosphere ; 233: 381-386, 2019 Oct.
Article En | MEDLINE | ID: mdl-31176901

Trophic transfer of contaminants dictates concentrations and potential toxic effects in top predators, yet biomagnification behaviour of many trace elements is poorly understood. We examined concentrations of vanadium and thallium, two globally-distributed and anthropogenically-enriched elements, in a food web of the Slave River, Northwest Territories, Canada. We found that tissue concentrations of both elements declined with increasing trophic position as measured by δ15N. Slopes of log [element] versus δ15N regressions were both negative, with a steeper slope for V (-0.369) compared with Tl (-0.099). These slopes correspond to declines of 94% with each step in the food chain for V and 54% with each step in the food chain for Tl. This biodilution behaviour for both elements meant that concentrations in fish were well below values considered to be of concern for the health of fish-eating consumers. Further study of these elements in food webs is needed to allow a fuller understanding of biomagnification patterns across a range of species and systems.


Environmental Monitoring/methods , Rivers , Thallium/analysis , Trace Elements/analysis , Vanadium/analysis , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/chemistry , Canada , Fishes/metabolism , Food Chain , Mercury/analysis , Rivers/chemistry , Species Specificity
15.
PLoS One ; 13(6): e0197159, 2018.
Article En | MEDLINE | ID: mdl-29874276

The estuarine crocodile (Crocodylus porosus) is one of the largest and most widespread crocodilians in the world. Although considered an apex species, the role of the estuarine crocodile in aquatic foodwebs is poorly understood; we know what crocodiles ingest, but not what nourishes them. In this study, we used a combination of stable isotope measurements (δ13C, δ15N, and δ34S) and direct feeding observations to identify the source of nutrition of estuarine crocodiles in Kakadu National Park, Northern Australia. Our results show that most crocodiles sampled (size 850 - 4200mm, with 76% of them being > 2.5 m) consume a large variety of prey, however a large proportion of their nutrition is derived from terrestrial prey. Introduced species such as water buffaloes (Bubalus bubalis) and pigs (Sus scrofa) could contribute between 53 and 84% to the nutrition of the sampled crocodiles. The isotopic composition of large crocodiles (total length > 3 m) suggested possible increase in marine prey consumption with size (R2 = 0.30; p = 0.005). Additionally, we found crocodiles sampled in the dry season had on average higher terrestrial contributions compared to crocodiles sampled during the wet season (84.1 ± 2.4% versus 55.4 ± 7.0%). Overall, we found that terrestrial prey are important source of nutrition for many crocodiles in this region where introduced herbivorous mammals are abundant.


Alligators and Crocodiles/physiology , Estuaries , Models, Biological , Predatory Behavior/physiology , Tropical Climate , Animals , Australia , Buffaloes , Sus scrofa
16.
Sci Rep ; 8(1): 2020, 2018 01 31.
Article En | MEDLINE | ID: mdl-29386654

The trophic position of a top predator, synonymous with food-chain length, is one of the most fundamental attributes of ecosystems. Stable isotope ratios of nitrogen (δ15N) have been used to estimate trophic position of organisms due to the predictable enrichment of 15N in consumer tissues relative to their diet. Previous studies in crocodilians have found upward ontogenetic shifts in their 'trophic position'. However, such increases are not expected from what is known about crocodilian diets because ontogenetic shifts in diet relate to taxonomic categories of prey rather than shifts to prey from higher trophic levels. When we analysed dietary information from the literature on the four Amazonian crocodilians, ontogenetic shifts in dietary-based trophic position (TPdiet) were minimal, and differed from those estimated using δ15N data (TPSIA). Thus, ontogenetic shifts in TPSIA may result not only from dietary assimilation but also from trophic discrimination factors (TDF or Δ 15N) associated with body size. Using a unique TDF value to estimate trophic position of crocodilians of all sizes might obscure conclusions about ontogenetic shifts in trophic position. Our findings may change the way that researchers estimate trophic position of organisms that show orders of magnitude differences in size across their life span.


Alligators and Crocodiles/physiology , Body Size , Diet , Food Chain , Alligators and Crocodiles/growth & development , Animals , Nitrogen Isotopes/pharmacokinetics
17.
Environ Int ; 102: 125-137, 2017 May.
Article En | MEDLINE | ID: mdl-28249740

Cumulative environmental impacts driven by anthropogenic stressors lead to disproportionate effects on indigenous communities that are reliant on land and water resources. Understanding and counteracting these effects requires knowledge from multiple sources. Yet the combined use of Traditional Knowledge (TK) and Scientific Knowledge (SK) has both technical and philosophical hurdles to overcome, and suffers from inherently imbalanced power dynamics that can disfavour the very communities it intends to benefit. In this article, we present a 'two-eyed seeing' approach for co-producing and blending knowledge about ecosystem health by using an adapted Bayesian Belief Network for the Slave River and Delta region in Canada's Northwest Territories. We highlight how bridging TK and SK with a combination of field data, interview transcripts, existing models, and expert judgement can address key questions about ecosystem health when considerable uncertainty exists. SK indicators (e.g., bird counts, mercury in fish, water depth) were graded as moderate, whereas TK indicators (e.g., bird usage, fish aesthetics, changes to water flow) were graded as being poor in comparison to the past. SK indicators were predominantly spatial (i.e., comparing to other locations) while the TK indicators were predominantly temporal (i.e., comparing across time). After being populated by 16 experts (local harvesters, Elders, governmental representatives, and scientists) using both TK and SK, the model output reported low probabilities that the social-ecological system is healthy as it used to be. We argue that it is novel and important to bridge TK and SK to address the challenges of environmental change such as the cumulative impacts of multiple stressors on ecosystems and the services they provide. This study presents a critical social-ecological tool for widening the evidence-base to a more holistic understanding of the system dynamics of multiple environmental stressors in ecosystems and for developing more effective knowledge-inclusive partnerships between indigenous communities, researchers and policy decision-makers. This represents new transformational empirical insights into how wider knowledge discourses can contribute to more effective adaptive co-management governance practices and solutions for the resilience and sustainability of ecosystems in Northern Canada and other parts of the world with strong indigenous land tenure.


Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Bayes Theorem , Knowledge , Northwest Territories
18.
Sci Total Environ ; 586: 338-346, 2017 May 15.
Article En | MEDLINE | ID: mdl-28190573

Tracking the uptake and transfer of toxic chemicals, such as mercury (Hg), in aquatic systems is challenging when many top predators are highly mobile and may therefore be exposed to chemicals in areas other than their location of capture, confounding interpretation of bioaccumulation trends. Here we show how the application of a less commonly used ecological tracer, stable sulfur isotope ratios (34S/32S, or δ34S), in a large river-delta-lake complex in northern Canada allows differentiation of resident from migrant fishes, beyond what was possible with more conventional 13C/12C and 15N/14N measurements. Though all large fishes (n=105) were captured in the river, the majority (76%) had δ34S values that were indicative of the fish having been reared in the lake. These migrant fishes were connected to a food chain with greater Hg trophic magnification relative to the resident fish of the river and delta. Yet, despite a shallower overall trophic magnification slope, large river-resident fish had higher Hg concentrations owing to a greater biomagnification of Hg between small and large fishes. These findings reveal how S isotopes can trace fish feeding habitats in large freshwater systems and better account for fish movement in complex landscapes with differential exposure pathways and conditions.


Environmental Monitoring , Fishes , Food Chain , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Canada , Carbon Isotopes , Environmental Biomarkers , Lakes , Nitrogen Isotopes , Sulfur Isotopes
19.
Oecologia ; 183(2): 505-517, 2017 02.
Article En | MEDLINE | ID: mdl-27896479

Food web subsidies from external sources ("allochthony") can support rich biological diversity and high secondary and tertiary production in aquatic systems, even those with low rates of primary production. However, animals vary in their degree of dependence on these subsidies. We examined dietary sources for aquatic animals restricted to refugial habitats (waterholes) during the dry season in Australia's wet-dry tropics, and show that allochthony is strongly size dependent. While small-bodied fishes and invertebrates derived a large proportion of their diet from autochthonous sources within the waterhole (phytoplankton, periphyton, or macrophytes), larger animals, including predatory fishes and crocodiles, demonstrated allochthony from seasonally inundated floodplains, coastal zones or the surrounding savanna. Autochthony declined roughly 10% for each order of magnitude increase in body size. The largest animals in the food web, estuarine crocodiles (Crocodylus porosus), derived ~80% of their diet from allochthonous sources. Allochthony enables crocodiles and large predatory fish to achieve high biomass, countering empirically derived expectations for negative density vs. body size relationships. These results highlight the strong degree of connectivity that exists between rivers and their floodplains in systems largely unaffected by river regulation or dams and levees, and how large iconic predators could be disproportionately affected by these human activities.


Food Chain , Rivers , Animals , Body Size , Ecosystem , Fishes
20.
Arch Environ Contam Toxicol ; 71(2): 157-70, 2016 Aug.
Article En | MEDLINE | ID: mdl-27272416

Mercury (Hg) contamination can pose risks to human and animal health as well as commercial fisheries. Reservoir construction in riverine systems produces flooded conditions amenable to Hg(II)-methylating bacteria, which can transform this relatively benign environmental contaminant into the bioaccumulative, environmentally relevant, and neurotoxic methyl-Hg (MeHg). Hg concentrations ([Hg]) in fishes from reservoirs can take decades to decrease to pre-dam levels, but less is known about Hg exported downstream and its dynamics within downstream fish populations. We examined and compared the multidecadal rates of biotic [Hg] decrease and contemporary factors affecting [Hg] in fish collected from a hydroelectric reservoir (Tobin Lake) and a related downstream fishery (Cumberland Lake) along the Saskatchewan River, Canada. Rates of [Hg] decrease were considered in four species-northern pike (Esox lucius), sauger (Sander canadensis), goldeye (Hiodon alosoides), and walleye (S. vitreus)-all of which showed a significant decrease over time (p < 0.001) and are now lower than Health Canada consumption guidelines (0.5 µg/g). Rates of decrease ranged from 0.5 to 3.9 %/year and were similar between sites in the cases of northern pike and sauger. Contemporary factors affecting [Hg] in walleye collected downstream include fish length (p < 0.001), fish age (p < 0.001), and trophic magnification through the food web (p < 0.001), and relationships between [Hg] and trophic level in predatory and prey fish are now similar to those found in non-Hg-inundated systems at a similar latitude. Together, these results suggest connected contamination between the two sites and delineate the timeline during which [Hg] in a variety of fish species decreased to nontoxic levels in both locations.


Environmental Monitoring , Fishes/metabolism , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Animals , Fisheries/statistics & numerical data , Mercury/metabolism , Power Plants , Water Pollutants, Chemical/metabolism
...