Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
PLoS One ; 19(5): e0303039, 2024.
Article En | MEDLINE | ID: mdl-38701045

The complexity of chronic wounds creates difficulty in effective treatments, leading to prolonged care and significant morbidity. Additionally, these wounds are incredibly prone to bacterial biofilm development, further complicating treatment. The current standard treatment of colonized superficial wounds, debridement with intermittent systemic antibiotics, can lead to systemic side-effects and often fails to directly target the bacterial biofilm. Furthermore, standard of care dressings do not directly provide adequate antimicrobial properties. This study aims to assess the capacity of human-derived collagen hydrogel to provide sustained antibiotic release to disrupt bacterial biofilms and decrease bacterial load while maintaining host cell viability and scaffold integrity. Human collagen harvested from flexor tendons underwent processing to yield a gellable liquid, and subsequently was combined with varying concentrations of gentamicin (50-500 mg/L) or clindamycin (10-100 mg/L). The elution kinetics of antibiotics from the hydrogel were analyzed using liquid chromatography-mass spectrometry. The gel was used to topically treat Methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens in established Kirby-Bauer and Crystal Violet models to assess the efficacy of bacterial inhibition. 2D mammalian cell monolayers were topically treated, and cell death was quantified to assess cytotoxicity. Bacteria-enhanced in vitro scratch assays were treated with antibiotic-embedded hydrogel and imaged over time to assess cell death and mobility. Collagen hydrogel embedded with antibiotics (cHG+abx) demonstrated sustained antibiotic release for up to 48 hours with successful inhibition of both MRSA and C. perfringens biofilms, while remaining bioactive up to 72 hours. Administration of cHG+abx with antibiotic concentrations up to 100X minimum inhibitory concentration was found to be non-toxic and facilitated mammalian cell migration in an in vitro scratch model. Collagen hydrogel is a promising pharmaceutical delivery vehicle that allows for safe, precise bacterial targeting for effective bacterial inhibition in a pro-regenerative scaffold.


Anti-Bacterial Agents , Biofilms , Collagen , Hydrogels , Methicillin-Resistant Staphylococcus aureus , Biofilms/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Humans , Collagen/chemistry , Hydrogels/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Clindamycin/pharmacology , Clindamycin/administration & dosage , Microbial Sensitivity Tests , Administration, Topical , Gentamicins/pharmacology , Gentamicins/administration & dosage
2.
Sci Rep ; 14(1): 5621, 2024 03 07.
Article En | MEDLINE | ID: mdl-38454046

Chronic non-healing wounds significantly strain modern healthcare systems, affecting 1-2% of the population in developed countries with costs ranging between $28.1 and $96.8 billion annually. Additionally, it has been established that chronic wounds resulting from comorbidities, such as peripheral vascular disease and diabetes mellitus, tend to be polymicrobial in nature. Treatment of polymicrobial chronic wounds with oral and IV antibiotics can result in antimicrobial resistance, leading to more difficult-to-treat wounds. Ideally, chronic ulcers would be topically treated with antibiotic combinations tailored to the microbiome of a patient's wound. We have previously shown that a topical collagen-rich hydrogel (cHG) can elute single antibiotics to inhibit bacterial growth in a manner that is nontoxic to mammalian cells. Here, we analyzed the microbiology of cultures taken from human patients diagnosed with diabetes mellitus suffering from chronic wounds present for more than 6 weeks. Additionally, we examined the safety of the elution of multiple antibiotics from collagen-rich hydrogel in mammalian cells in vivo. Finally, we aimed to create tailored combinations of antibiotics impregnated into cHG to successfully target and treat infections and eradicate biofilms cultured from human chronic diabetic wound tissue. We found that the majority of human chronic wounds in our study were polymicrobial in nature. The elution of multiple antibiotics from cHG was well-tolerated in mammalian cells, making it a potential topical treatment of the polymicrobial chronic wound. Finally, combinations of antibiotics tailored to each patient's microbiome eluted from a collagen-rich hydrogel successfully treated bacterial cultures isolated from patient samples via an in vitro assay.


Anti-Bacterial Agents , Diabetic Foot , Animals , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Hydrogels , Wound Healing , Collagen , Diabetic Foot/drug therapy , Biofilms , Mammals
3.
Plast Reconstr Surg Glob Open ; 11(5): e4984, 2023 May.
Article En | MEDLINE | ID: mdl-37250833

Chronic diabetic wounds are a significant issue that can be treated with topical hydrogel therapies. The aim of this study was to review the different compositions of hydrogel that have been developed and analyze their clinical relevance in the treatment of chronic diabetic wounds. Methods: We conducted a scoping review in which twelve articles were selected for review after applying relevant inclusion and exclusion criteria using a two-reviewer strategy. Data extracted from these studies was used to answer the following research question: What is the composition of hydrogels used to treat chronic diabetic wounds and how effective are they? Results: We analyzed five randomized controlled trials, two retrospective studies, three reviews, and two case reports. Hydrogel compositions discussed included mesenchymal stem cell sheets, carbomer, collagen, and alginate hydrogels, as well as hydrogels embedded with platelet-derived growth factor. Synthetic hydrogels, largely composed of carbomers, were found to have high levels of evidence supporting their wound healing properties, though few articles described their routine use in a clinical setting. Collagen hydrogels dominate the present-day hydrogel market in the clinical treatment of chronic diabetic wounds. The augmentation of hydrogels with therapeutic biomaterials is a new field of hydrogel research, with studies demonstrating promising early in vitro and in vivo animal studies demonstrating promising early results for in vitro and in vivo animal investigations. Conclusions: Current research supports hydrogels as a promising topical therapy in the treatment of chronic diabetic wounds. Augmenting Food & Drug Administration-approved hydrogels with therapeutic substances remains an interesting early area of investigation.

4.
Acta Biomater ; 135: 260-273, 2021 11.
Article En | MEDLINE | ID: mdl-34469789

Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.


Biocompatible Materials , Neovascularization, Physiologic , Animals , Biocompatible Materials/pharmacology , Endothelial Cells , Extracellular Matrix , Hydrogels/pharmacology , Mice , Porosity
5.
Front Bioeng Biotechnol ; 9: 620128, 2021.
Article En | MEDLINE | ID: mdl-33869150

Angiogenesis is a complex, multicellular process that involves bidirectional interactions between extracellular matrix (ECM) and collectively invading endothelial cell (EC) sprouts that extend the microvasculature during development, wound healing, and disease processes. While many aspects of angiogenesis have been well studied, the relationship between endothelial sprout morphology and subsequent neovessel function remains relatively unknown. Here, we investigated how various soluble and physical matrix cues that regulate endothelial sprouting speed and proliferation correspond to changes in sprout morphology, namely, sprout stalk diameter. We found that sprout stalk cells utilize a combination of cytoskeletal forces and proteolysis to physically compact and degrade the surrounding matrix, thus creating sufficient space in three-dimensional (3D) ECM for lateral expansion. As increasing sprout diameter precedes lumenization to generate perfusable neovessels, this work highlights how dynamic endothelial stalk cell-ECM interactions promote the generation of functional neovessels during sprouting angiogenesis to provide insight into the design of vascularized, implantable biomaterials.

6.
Lab Chip ; 20(6): 1153-1166, 2020 03 17.
Article En | MEDLINE | ID: mdl-32100769

Angiogenesis is a complex morphogenetic process that involves intimate interactions between multicellular endothelial structures and their extracellular milieu. In vitro models of angiogenesis can aid in reducing the complexity of the in vivo microenvironment and provide mechanistic insight into how soluble and physical extracellular matrix cues regulate this process. To investigate how microenvironmental cues regulate angiogenesis and the function of resulting microvasculature, we multiplexed an established angiogenesis-on-a-chip platform that affords higher throughput investigation of 3D endothelial cell sprouting emanating from a parent vessel through defined biochemical gradients and extracellular matrix. We found that two fundamental endothelial cell functions, migration and proliferation, dictate endothelial cell invasion as single cells vs. multicellular sprouts. Microenvironmental cues that elicit excessive migration speed incommensurate with proliferation resulted in microvasculature with poor barrier function and an inability to transport fluid across the microvascular bed. Restoring the balance between migration speed and proliferation rate rescued multicellular sprout invasion, providing a new framework for the design of pro-angiogenic biomaterials that guide functional microvasculature formation for regenerative therapies.


Cues , Neovascularization, Physiologic , Cell Movement , Cell Proliferation , Endothelial Cells , Humans , Neovascularization, Pathologic
...