Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Sci Rep ; 14(1): 9845, 2024 04 29.
Article En | MEDLINE | ID: mdl-38684750

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Nanoparticles , Tyrosine , Animals , Nanoparticles/chemistry , Tyrosine/chemistry , Tyrosine/analogs & derivatives , Administration, Inhalation , Lung/metabolism , Lung/drug effects , Mice , Asthma/drug therapy , Polyesters/chemistry , Polyesters/chemical synthesis , Dry Powder Inhalers , Fluticasone/chemistry , Fluticasone/administration & dosage , Drug Delivery Systems , Salmeterol Xinafoate/chemistry , Salmeterol Xinafoate/administration & dosage , Particle Size , Drug Carriers/chemistry
2.
J Basic Clin Physiol Pharmacol ; 35(1-2): 85-91, 2024 Jan 01.
Article En | MEDLINE | ID: mdl-38468541

OBJECTIVES: The principal motive of this study is to explore the influence maternal separation (MS) exhibits on the mRNA expression of major drug metabolizing-cyp450s in parallel with the assessment of pathological changes that can be induced by MS in the livers of experimental mice. METHODS: Eighteen Balb/c mouse pups, comprising of both males and females, were separated from their mothers after birth. Following a six-week period during when the pups became adults, the mice were sacrificed and their livers were isolated for analysis of weight, pathohistological alterations, and the mRNA expression of drug metabolizing cyp450 genes: cyp1a1, cyp3a11, cyp2d9, and cyp2c29. RESULTS: The study demonstrated that MS markedly downregulated (p<0.05) the mRNA expression of all tested drug-metabolizing cyp450s in livers of female and male mice. Furthermore, the mRNA levels of major drug-metabolizing cyp450s were notably lower (p<0.05) in livers of female MS mice as compared with male MS mice. It was found that values of the total body weight and liver weight of MS mice did not vary significantly (p>0.05) from those of the control groups. Additionally, histological examination revealed that the hepatic tissue of MS mice was normal, similar to that of the control mice. CONCLUSIONS: In summary, MS downregulates the gene expression of major hepatic drug-metabolizing cyp450s without inducing pathological alterations in the livers of mice. These findings provide an explanation for the heterogeneity in pharmacokinetics and drug response of patients with early life stress.


Cytochrome P-450 Enzyme System , Maternal Deprivation , Humans , Adult , Male , Mice , Female , Animals , Cytochrome P-450 Enzyme System/genetics , Liver/metabolism , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression
3.
Heliyon ; 10(3): e25734, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38356603

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely recognized for their analgesic and anti-inflammatory properties. Amidst the SARS-CoV-2 pandemic, the role of NSAIDs in modulating viral and bacterial infections has become a critical area of research, sparking debates and necessitating a thorough review. This review examines the multifaceted interactions between NSAIDs, immune responses, and infections. Focusing on the immunomodulatory mechanisms of NSAIDs in SARS-CoV-2 and their implications for other viral and bacterial infections, we aim to provide clarity and direction for future therapeutic strategies. NSAIDs demonstrate a dual role in infectious diseases. They reduce inflammation by decreasing neutrophil recruitment and cytokine release, yet potentially compromise antiviral defense mechanisms. They also modulate cytokine storms in SARS-CoV-2 and exhibit the potential to enhance anti-tumor immunity by inhibiting tumor-induced COX-2/PGE2 signaling. Specific NSAIDs have shown efficacy in inhibiting viral replication. The review highlights NSAIDs' synergy with other medications, like COX inhibitors and immunotherapy agents, in augmenting therapeutic effects. Notably, the World Health Organization's analysis found no substantial link between NSAIDs and the worsening of viral respiratory infections. The findings underscore NSAIDs' complex role in infection management. Understanding these interactions is crucial for optimizing therapeutic approaches in current and future pandemics. However, their dual nature warrants cautious application, particularly in vulnerable populations. NSAIDs present a paradoxical impact on immune responses in viral and bacterial infections. While offering potential benefits, their usage in infectious diseases, especially SARS-CoV-2, demands a nuanced understanding to balance therapeutic advantages against possible adverse effects.

4.
Microrna ; 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38265404

BACKGROUND: Alteration in the expression and activity of drug-metabolizing enzymes (DMEs) can alter the pharmacokinetics and hence the response of the drug. Some chemicals found in herbs and fruits affect the expression of DMEs. Calamintha incana is commonly used in Middle Eastern Arabic countries. There is no report regarding the influence of Calamintha incana on the hepatic expression of DMEs. AIMS: The current investigation aimed to investigate the effect of Calamintha incana consump-tion on the mRNA expression of major hepatic drug-metabolizing cytochrome (cyp) P450 genes in mice. METHODS: The chemical composition of the ethanoic extract was analyzed using liquid chroma-tography/mass spectrometry. Then, 21 BALB/c mice were used for the in vivo experiment. The mice were divided into three groups, each consisting of seven mice. The first group (low-dose group) was treated with 41.6 mg/kg of Calamintha incana extract and the second group was administered the high-dose (125 mg/kg) of the extract for one month. The mice in the third "con-trol" group administrated the vehicle 20% polyethylene glycol 200. Then, the expression of cyp3a11, cyp2c29, cyp2d9, and cyp1a1 was analyzed using the real-time polymerase chain reac-tion. The relative liver weights of the mice and the hepatic pathohistological alterations were assessed. RESULTS: The ethanolic extract of Calamintha incana contained 27 phytochemical compounds. The most abundant compounds were linolenic acid, myristic acid, and p-cymene. It was found that the low dose of Calamintha incana extract upregulated significantly (P < 0.05) the expres-sion of cyp3a11 by more than ten folds in the liver of treated mice. Furthermore, the histological analysis showed that low- and high-dose administration of the C. incana did not cause patholog-ical alterations. CONCLUSION: It can be concluded from these findings that consumption of low doses of Cala-mintha incana upregulated the mRNA expression of mouse cyp3a11 without causing histopatho-logical alterations in the livers. Further studies are needed to determine the influence of Cala-mintha incana on the pharmacokinetics and response of drugs metabolized by cyp3a11.

5.
Adv Med Educ Pract ; 14: 1391-1400, 2023.
Article En | MEDLINE | ID: mdl-38106923

Background: Artificial intelligence (AI) programs generate responses to input text, showcasing their innovative capabilities in education and demonstrating various potential benefits, particularly in the field of medical education. The current knowledge of health profession students about AI programs has still not been assessed in Jordan and the West Bank of Palestine (WBP). Aim: This study aimed to assess students' awareness and practice of AI programs in medicine and pharmacy in Jordan and the WBP. Methods: This study was in the form of an observational, cross-sectional survey. A questionnaire was electronically distributed among students of medicine and pharmacy at An-Najah National University (WBP), Al-Isra University (Jordan), and Al-Balqa Applied University (Jordan). The questionnaire consisted of three main categories: sociodemographic characteristics of the participants, practice of AI programs, and perceptions of AI programs, including ChatGPT. Results: A total of 321 students responded to the distributed questionnaire, and 261 participants (81.3%) stated that they had heard about AI programs. In addition, 135 participants had used AI programs before (42.1%), while less than half the participants used them in their university studies (44.2%): for drug information (44.5%), homework (38.9%), and writing research articles (39.3%). There was significantly (48.3%, P<0.005) more conviction in the use of AI programs for writing research articles among pharmacy students from Palestine compared to Jordan. Lastly, there was significantly more (53.8%, P<0.05) AI program use among medicine students than pharmacy students. Conclusion: While most medicine and pharmacy students had heard about AI programs, only a small proportion of the participants had used them in their medical study. In addition, attitudes and practice related to AI programs in their education differs between medicine and pharmacy students and between WBP and Jordan.

6.
J Med Life ; 16(9): 1393-1399, 2023 Sep.
Article En | MEDLINE | ID: mdl-38107707

This study addressed the challenge of accurately detecting mycotoxins in herbs and spices, which have gained popularity as alternative medicines but pose health risks due to potential contamination. We used a competitive direct ELISA kit (Art No. 8610), Veratox for Ochratoxin, to quantify Ochratoxin A in the herb and spice samples. The samples were first prepared using solid-liquid extraction with 70% methanol. The resulting filtrate was then subjected to ELISA analysis. The results of the analysis were then further analyzed using principal component analysis (PCA). In this study, PCA was used to classify the concentration levels of Ochratoxin A based on various factors, such as the packaging type, country of origin, shelf life, and sample weight. The limits of detection (LOD) and quantification (LOQ) values indicate the lowest amount of Ochratoxin A that can be detected and quantified, respectively, with high accuracy and precision. The range of the LOD and LOQ values (0.43-0.58 µg/kg and 1.45-1.95 µg/kg, respectively) suggests that the method used was capable of detecting and quantifying Ochratoxin A in the herb and spice samples at different concentrations with a high degree of accuracy and precision. These results suggest that while most of the samples (73.33%) were below the maximum residue limit (MRL) for Ochratoxin A, a significant number of samples (26.67%) had concentrations of Ochratoxin A that were higher than the MRL. This highlights the importance of monitoring Ochratoxin A in herb and spice samples and ensuring the products are safe for consumption.


Ochratoxins , Humans , Ochratoxins/analysis , Spices/analysis , Chromatography, High Pressure Liquid/methods , Food Contamination/analysis , Enzyme-Linked Immunosorbent Assay/methods
7.
Toxicol Ind Health ; 39(11): 651-663, 2023 Nov.
Article En | MEDLINE | ID: mdl-37789601

Copper oxide nanomaterials (CuO NPs) have been widely utilized in many fields, including antibacterial materials, anti-tumor, osteoporosis treatments, imaging, drug delivery, cosmetics, lubricants for metallic coating, the food industry, and electronics. Little is known about the potential risk to human health and ecosystems. The present work was conducted to investigate the ultrastructural changes induced by 20 ± 5 nm CuO NPs in hepatic tissues. Adult healthy male Wister albino rats were exposed to 36 intraperitoneal (ip) injections of 25 nm CuO NPs (2 mg/kg bw). Liver biopsies from all rats under study were processed for transmission electron microscopy (TEM) processing and examination for hepatic ultrastructural alterations. The hepatic tissue of rats exposed to repeated administrations of CuO NPs exhibited the following ultrastructural alterations: extensive mitochondrial damage in the form of swelling, crystolysis and matrix lysis, formation of phagocytized bodies and myelin multilayer figures, lysosomal hyperplasia, cytoplasmic degeneration and vacuolation, fat globules precipitation, chromatin clumping, and nuclear envelope irregularity. The findings indicated that CuO NPs interact with the hepatic tissue components and could induce alterations in the hepatocytes with the mitochondria as the main target organelles of copper nanomaterials. More work is recommended for better understanding the pathogenesis of CuO NPs.


Metal Nanoparticles , Nanoparticles , Humans , Adult , Male , Rats , Animals , Copper/toxicity , Copper/chemistry , Metal Nanoparticles/chemistry , Ecosystem , Rats, Wistar , Nanoparticles/toxicity , Nanoparticles/chemistry , Liver , Microscopy, Electron, Transmission , Oxides
8.
J Clin Med ; 12(20)2023 Oct 18.
Article En | MEDLINE | ID: mdl-37892742

BACKGROUND: The level of fasting blood glucose (FBG) is influenced by several factors, including health status, genetics, and diet. Some studies have reported a beneficial effect of Ramadan Intermittent Fasting (RIF) on diabetic patients. However, clinical observations have shown that diabetes is exacerbated in some patients. AIM: This study aims to investigate the influence of RIF on the FBG level, a biomarker of hyperglycemia and diabetes, and to identify factors associated with variations in FBG levels during RIF among diabetic patients. METHODS: This study is a cross-sectional study. We monitored the FBG levels of 181 type II diabetic patients over a two-month period, from 20 February to 20 April 2023, which represents the Islamic lunar months of Shaban (8th month) and Ramadan (9th month). Ramadan provides a prominent month of intermittent fasting practice for studying its physiological effects on diabetes. We collected clinical data from each participant, including demographic information, co-morbidities, and medications used during this period. RESULTS: Based on our findings, diabetic patients were classified into three groups depending on the influence of RIF on FBG levels: the positively affected group (44%), whose average FBG levels were reduced; the neutrally affected group (24%), whose average FBG levels did not change; and the negatively affected group (32%), whose average FBG levels increased during the fasting month of Ramadan compared to the previous month. Furthermore, we found that the positive effect of RIF was more frequent among obese, non-geriatric, and male diabetic patients, while the negative effect of RIF was more frequent among patients who were not adhering to the medication. CONCLUSIONS: This study concludes that RIF affects FBG levels differently among diabetic patients. These findings should be taken into consideration when treating diabetic patients during the fasting month of Ramadan, and further studies are needed to identify (1) factors associated with inter-individual variation in the response to RIF and (2) those who are great candidates for RIF.

9.
Libyan J Med ; 18(1): 2270188, 2023 Dec.
Article En | MEDLINE | ID: mdl-37883503

Introduction:There is a variation in drug response among patients who practice intermittent fasting. Alteration in the expression of drug-metabolizing enzymes (DMEs) can affect the pharmacokinetics and drug response.Aims: This research aimed to determine the effect of intermittent fasting on the mRNA expression of major drug-metabolizing cyp450s in the liver of diabetic mice.Methods: Thirty-two male Balb/c mice were divided into four groups; control, nonfasting diabetic, non-diabetic fasting, and diabetic fasting mice. Insulin-dependent diabetes was induced in mice by a single high-dose (250 mg/kg) streptozocin. Mice of non-diabetic and diabetic fasting groups were subjected to 10-day intermittent fasting for 17 hours daily. Then, the mRNA expression of mouse phase I DMEs cyp1a1, cyp2c29, cyp2d9, and cyp3a11 was analyzed using real-time polymerase chain reaction. In addition, the liver of mice in all groups was examined for pathohistological alterations.Results: Diabetes downregulated the mRNA expression of hepatic drug-metabolizing cyp450s in diabetic mice, while intermittent fasting significantly (P < 0.05) increased it. Also, cyp2d9 and cyp3a11 were upregulated in the liver of diabetic fasting mice. These alterations in the gene expression were correlated with the pathohistological alterations, where livers of diabetic mice showed dilatation in the blood sinusoids and inflammatory cells leukocyte infiltrations. Whereas livers of diabetic fasting mice showed almost comparable histological findings to control mice.Conclusions: Intermittent fasting can protect the liver against diabetes-induced hepatotoxicity and the down-regulation of DME genes in the diabetic liver. These results can explain, at least partly, the inter-individual variation in the drug response during practicing fasting.


Cytochrome P-450 Enzyme System , Diabetes Mellitus, Experimental , Humans , Mice , Male , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology , Diabetes Mellitus, Experimental/metabolism , Intermittent Fasting , Liver , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/pharmacology
10.
Front Biosci (Landmark Ed) ; 28(7): 137, 2023 07 13.
Article En | MEDLINE | ID: mdl-37525906

BACKGROUND: Hydroxychloroquine (HCQ) toxicity can adversely affect vital organs, cause pathologic ocular damage, and can have direct cardiovascular effects. This study aims to identify the biochemical, hematological, and histological alterations of the vital organs associated with the effects of HCQ. METHODS: Male albino rats were exposed to the equivalent of HCQ therapeutic doses given to human patients being affected by malaria, lupus erythematosus, and COVID-19. The animal blood samples were subjected to hematological analysis, biochemical analysis, liver function tests, kidney function tests, and cardiac biomarkers. Liver, kidney, heart, spleen, and testis biopsies were subjected to histological examination. RESULTS: HCQ significantly lowered the values of erythrocytes, hemoglobin, hematocrit, platelets, leucocytes, and lymphocytes but significantly increased the values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), amylase, alkaline phosphatase, lactate dehydrogenase, cholesterol, and chlorine ions. The renal tissues of HCQ-treated animals demonstrated glomerular fragmentation, partial atrophy degeneration, renal tubules hydropic degeneration, hyaline cast formation, and interstitial edema formation. Additionally, the heart exhibited myofiber necrosis, myolysis, wavy appearance, disorganization, and disarray. The testicular tissues also demonstrated spermatocyte degeneration, spermatogenic cell sloughing, testicular interstitial edema, and occasional spermatogenic arrest. Additionally, the spleen showed a decrease in the number and size of the white pulp follicles, a decrease in the number of apoptotic activity, and a decline in the number of T-rich cells. However, the red pulp demonstrated a diffuse decline in B rich-lymphocytes and macrophages. The liver was also the least affected but showed Kupffer cell hyperplasia and occasional hepatocyte dysplasia. CONCLUSIONS: The results indicate that chronic exposure to HCQ could alter the structures and functions of the vital organs.


COVID-19 , Hydroxychloroquine , Rats , Animals , Humans , Male , Hydroxychloroquine/toxicity , COVID-19 Drug Treatment , Liver/pathology , Necrosis/pathology
11.
J Integr Neurosci ; 22(4): 104, 2023 Jul 26.
Article En | MEDLINE | ID: mdl-37519168

BACKGROUND: Mefenamic acid (MFA), a common analgesic, causes central nervous system (CNS) toxicity at high doses with a proposed activity on the Gamma-aminobutyric acid (GABA) system. However, it remains unknown whether flumazenil (FMZ), a GABA type A receptor (GABAAR) antagonist, can reverse MFA toxicity. METHODS: The behavioral and neurophysiological effects of MFA were investigated in mice with and without FMZ pre-treatment. The elevated zero maze (EZM) and marble burying tests were used to assess anxiety-like behaviors and burying activities, respectively. The standard bar test was used to evaluate catalepsy, while the actophotometer test was used to measure locomotor activity. Seizure intensity was scored, and fatalities were counted. RESULTS: Without FMZ pre-treatment, MFA induced behavioral and neurophysiological effects in a dose-dependent manner as follows: At a dose of 20 mg/kg, i.p, MFA-treated mice exhibited anxiety-like behaviors, which was determined by a significant increase in the time spent in the closed areas and a significant decrease in the number of entries to the open areas of the EZM apparatus. These mice also showed a significant decrease in the burying activity, manifested as a significant decrease in the number of buried marbles. At 40 mg/kg, i.p., MFA-treated mice showed catalepsy that was associated with a significant decrease in locomotor activity. At a dose of 80 mg/kg, i.p., mice developed fatal tonic-clonic seizures (seizure score = 4). Pre-treatment with FMZ (5 mg/kg, i.p.) significantly reversed the anxiety-like behaviors and restored marble-burying activity. Additionally, FMZ prevented catalepsy, significantly restored locomotor activity, reduced seizure intensity (seizure score = 0.3) and significantly reduced mortalities. CONCLUSIONS: The present study's findings indicate that activation of the GABAAR is involved in the CNS toxicity of MFA, and FMZ reverses MFA toxicity by interfering with this receptor.


Flumazenil , Mefenamic Acid , Mice , Animals , Flumazenil/adverse effects , Mefenamic Acid/adverse effects , Receptors, GABA-A , Catalepsy , Central Nervous System , Seizures/chemically induced , Seizures/drug therapy , gamma-Aminobutyric Acid/adverse effects , Behavior, Animal
12.
Molecules ; 28(2)2023 Jan 11.
Article En | MEDLINE | ID: mdl-36677806

Promethazine hydrochloride (PMZ), a potent H1-histamine blocker widely used to prevent motion sickness, dizziness, nausea, and vomiting, has a bitter taste. In the present study, taste masked PMZ nanocapsules (NCs) were prepared using an interfacial polycondensation technique. A one-step approach was used to expedite the synthesis of NCs made from a biocompatible and biodegradable polyamide based on l-arginine. The produced NCs had an average particle size of 193.63 ± 39.1 nm and a zeta potential of −31.7 ± 1.25 mV, indicating their stability. The NCs were characterized using differential scanning calorimetric analysis and X-ray diffraction, as well as transmission electron microscopy that demonstrated the formation of the NCs and the incorporation of PMZ within the polymer. The in vitro release study of the PMZ-loaded NCs displayed a 0.91 ± 0.02% release of PMZ after 10 min using artificial saliva as the dissolution media, indicating excellent taste masked particles. The in vivo study using mice revealed that the amount of fluid consumed by the PMZ-NCs group was significantly higher than that consumed by the free PMZ group (p < 0.05). This study confirmed that NCs using polyamides based on l-arginine and interfacial polycondensation can serve as a good platform for the effective taste masking of bitter actives.


Nanocapsules , Promethazine , Mice , Animals , Promethazine/chemistry , Nylons , Taste , Taste Perception , Histamine H1 Antagonists
13.
J Pers Med ; 12(11)2022 Nov 17.
Article En | MEDLINE | ID: mdl-36422097

BACKGROUND: The elevated plus maze (EPM) and the marble burying (MB) tests are common behavioral tests used for behavioral phenotyping in mouse models for neurodevelopmental disorders. However, the behavioral effects of maternal separation (MS), a standard paradigm for early life stress in animals, in both the EPM and MB tests remain incompletely known. OBJECTIVES: This study aimed to investigate the behavioral effects of prolonged MS in the offspring of mice using the EPM and MB tests. METHODS: Male BALB/c mice were isolated from their mothers for 4 h each day during the first 30 days after birth. On day 50 postnatal, groups of separated and non-separated mice (n = 18/each group) were subjected to the EPM and MB tests for comparative behavioral evaluations. In addition, the locomotor activity of mice was evaluated using the actophotometer test. RESULTS: The findings of the EPM test revealed that separated mice exhibited anxiolytic-like behaviors, as evidenced by a significant increase in the latency to closed arms and the time spent in the open arms compared with non-separated mice. Separated mice also showed compulsive burying activity in the MB test, as determined by a significant increase in the number of buried marbles. The results of the actophotometer test did not show any significant change in locomotor activity. CONCLUSIONS: Prolonged MS caused the adult offspring of mice to exhibit a decrease in anxiety state and increased compulsive burying activity, which were not associated with a change in locomotor activity. Further investigations with validated tests are needed to support these findings.

14.
Toxicol Ind Health ; 38(12): 789-800, 2022 Dec.
Article En | MEDLINE | ID: mdl-36253334

Gold nanoparticles (Au NPs) are used in diagnostic and therapeutic applications together with a variety of industrial purposes and in many biomedical sectors with potential risks to human health. The present study aimed to the histological, histochemical, and ultrastructural alterations induced by Au NPS in vital organs. Healthy male Wistar Albino rats (Rattus norvegicus) were subjected to 20 injections of 10-nm Au NPs at a daily dose of 2 mg/kg. Liver, kidney, heart, and lung biopsies from control and Au NPs-treated rats under study were subjected to histological and histochemical examinations. In comparison with the control rats, the renal tissue of Au NPs-treated rats demonstrated glomerular congestion, interstitial inflammatory cell infiltration, renal tubular hydropic degeneration, cloudy swelling, necrosis, and hyaline cast precipitation. In addition, Au NPs induced the following hepatic alterations: hepatocyte cytolysis, cytoplasmic vacuolation, hydropic degeneration, and nuclear alterations together with sinusoidal dilatation. Moreover, the hearts of the treated rats demonstrated myocarditis, cardiac congestion, hyalinosis, cardiomyocyte hydropic degeneration, myofiber disarray and cardiac congestion. The lungs of Au NPs-treated rats also exhibited the following pulmonary alterations: alectasis, emphysema, inflammatory cell inflammation, thickened alveolar walls, pulmonary interstitial edema, congestion, hypersensitivity, fibrocyte proliferation, and honeycombing. In conclusion, exposure to Au NPs induced histological, histochemical and ultrastructural alterations in the vital organs that may alter the function of these organs. Additional efforts are needed for better understanding the potential risks of Au NPs to human health.


Gold , Metal Nanoparticles , Humans , Animals , Rats , Male , Gold/toxicity , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Particle Size , Rats, Wistar , Liver/pathology
15.
Curr Drug Metab ; 23(8): 666-676, 2022.
Article En | MEDLINE | ID: mdl-35993475

AIMS: This study aimed to investigate the effects of consuming Phoenix dactylifera and fasting on the mRNA expression of major hepatic drug-metabolizing enzymes in mice. METHODS: Phoenix dactylifera ethanolic extract was analyzed using LC-MS/MS. We used forty-two male Balb/c mice, which were treated with low (300 mg/kg) and high (2583 mg/kg) doses of Phoenix dactylifera and fasted for 24 hours, two weeks, and one month. Then, we analyzed the expression of cyp3a11, cyp2c29, cyp2d9, and ugt2b1 using real-time polymerase chain reaction assay. In addition, we assessed the relative liver weights of the mice and the hepatic phathohistological alterations. RESULTS: We found that Phoenix dactylifera ethanolic extract contained 38 phytochemical compounds, mainly kaempherol, campesterol, lutein, apigenin, genistein, and isoquercetin. Fasting significantly upregulated the mRNA expression of several drug-metabolizing enzymes in a time-dependent manner and we showed that consuming the low dose of Phoenix dactylifera significantly upregulated the expression of drug-metabolizing enzymes more than the high dose. The results of the histological examinations and relative liver weight showed that fasting and consuming of Phoenix dactylifera did not cause any toxicological alterations in the liver of the mice. CONCLUSION: It is concluded from this study that fasting and consuming of Phoenix dactylifera upregulated the mRNA expression of major drug-metabolizing enzymes in mouse livers. These findings may explain, at least partly, the variation of drug response during fasting in the month of Ramadan and would direct future clinical studies in optimizing the dosing of pharmacotherapeutic regimen.


Phoeniceae , Male , Animals , Mice , Chromatography, Liquid , Tandem Mass Spectrometry , Plant Extracts , RNA, Messenger
16.
Biomolecules ; 12(7)2022 06 23.
Article En | MEDLINE | ID: mdl-35883434

Colorectal cancer is one of the most prevalent cancer types. Although there have been breakthroughs in its treatments, a better understanding of the molecular mechanisms and genetic involvement in colorectal cancer will have a substantial role in producing novel and targeted treatments with better safety profiles. In this review, the main molecular pathways and driver genes that are responsible for initiating and propagating the cascade of signaling molecules reaching carcinoma and the aggressive metastatic stages of colorectal cancer were presented. Protein kinases involved in colorectal cancer, as much as other cancers, have seen much focus and committed efforts due to their crucial role in subsidizing, inhibiting, or changing the disease course. Moreover, notable improvements in colorectal cancer treatments with in silico studies and the enhanced selectivity on specific macromolecular targets were discussed. Besides, the selective multi-target agents have been made easier by employing in silico methods in molecular de novo synthesis or target identification and drug repurposing.


Colorectal Neoplasms , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Drug Delivery Systems , Drug Discovery , Drug Repositioning/methods , Humans , Signal Transduction
17.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 01.
Article En | MEDLINE | ID: mdl-35745615

Paracetamol and nonsteroidal anti-inflammatory drugs are widely used in the management of respiratory viral infections. This study aimed to determine the effects of the most commonly used analgesics (paracetamol, ibuprofen, and diclofenac) on the mRNA expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and arachidonic-acid-metabolizing genes in mouse lungs. A total of twenty eight Balb/c mice were divided into four groups and treated separately with vehicle, paracetamol, ibuprofen, and diclofenac in clinically equivalent doses for 14 days. Then, the expressions of SARS-CoV-2 entry, ACE2, TMPRSS2, and Ctsl genes, in addition to the arachidonic-acid-metabolizing cyp450, cox, and alox genes, were analyzed using real-time PCR. Paracetamol increased the expressions of TMPRSS2 and Ctsl genes by 8.5 and 5.6 folds, respectively, while ibuprofen and diclofenac significantly decreased the expression of the ACE2 gene by more than 2.5 folds. In addition, all tested drugs downregulated (p < 0.05) cox2 gene expression, and paracetamol reduced the mRNA levels of cyp4a12 and 2j5. These molecular alterations in diclofenac and ibuprofen were associated with pathohistological alterations, where both analgesics induced the infiltration of inflammatory cells and airway wall thickening. It is concluded that analgesics such as paracetamol, ibuprofen, and diclofenac alter the expression of SARS-CoV-2 entry and arachidonic-acid-metabolizing genes in mouse lungs.

18.
Molecules ; 27(9)2022 May 08.
Article En | MEDLINE | ID: mdl-35566373

2-(4-Chlorophenyl)-5-benzoxazoleacetic acid (CBA) and its ester, methyl-2-(4-chloro-phenyl)-5-benzoxazoleacetate (MCBA), were synthesized, and their structures were confirmed by 1HNMR, IR, and mass spectrophotometry. The anti-psoriatic activities of CBA and MCBA were tested using an imiquimod (IMQ)-induced psoriatic mouse model, in which mice were treated both topically (1% w/w) and orally (125 mg/kg) for 14 days. The erythema intensity, thickness, and desquamation of psoriasis were scored by calculating the psoriasis area severity index (PASI). The study also included the determination of histopathological alterations in the skin tissues of treated mice. Topical and oral administration of CBA and MCBA led to a reduction in erythema intensity, thickness, and desquamation, which was demonstrated by a significant decrease in the PASI value. In addition, skin tissues of mice treated with CBA and MCBA showed less evidence of psoriatic alterations, such as hyperkeratosis, parakeratosis, scale crust, edema, psoriasiform, and hyperplasia. After administration of either topical or oral dosing, the anti-psoriatic effects were found to be stronger in MCBA-treated than in CBA-treated mice. These effects were comparable to those produced by Clobetasol propionate, the reference drug. This drug discovery could be translated into a potential new drug for future clinical use in psoriasis treatment.


Benzoxazoles , Psoriasis , Animals , Benzoxazoles/pharmacology , Benzoxazoles/therapeutic use , Disease Models, Animal , Imiquimod/adverse effects , Mice , Mice, Inbred CBA , Pharmaceutical Preparations , Psoriasis/chemically induced , Skin
19.
Toxicol Ind Health ; 38(2): 80-91, 2022 Feb.
Article En | MEDLINE | ID: mdl-35209751

Copper oxide nanomaterials are used in many biomedical, agricultural, environmental, and industrial sectors with potential risk to human health and the environment. The present study was conducted to determine the renal ultrastructural damage caused by 25 nm CuO nanoparticles in renal tissues. Adult healthy male Wister Albino rats (Rattus norvegicus) were administered 35 intraperitoneal injections of CuO nanoparticles (2 mg/kg). Ultrastructural changes were evaluated using transmission electron microscopy techniques. The renal tissues of rats with subchronic exposure to CuO nanoparticles demonstrated glomerular alterations that included hypertrophic endothelial cells, dilated capillaries and occlusions, podocyte hypertrophy, pedicle disorganization, mesangial cell hyperplasia, and crystalloid precipitation. Moreover, the treated renal cells exhibited mitochondrial swelling and crystolysis, cytoplasmic vacoulization, lysosomal hypertrophy, apoptotic activity, endoplasmic reticulum dilatation, nuclear deformity, chromatin dissolution, and basement membrane thickening. In addition, disruption and disorganization of the renal cells microvilli together with cystolic inclusions were also detected. It was concluded from the present findings that CuO nanoparticles could interact with the components of the renal tissues in ways that could cause ultrastructural injury, suggesting renal tissue pathophysiology. Additional studies are suggested for a better understanding the nanotoxicity of CuO nanomaterials.


Copper , Metal Nanoparticles , Animals , Copper/toxicity , Endoplasmic Reticulum , Endothelial Cells , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Microscopy, Electron , Oxides , Rats , Rats, Wistar
20.
Fundam Clin Pharmacol ; 36(1): 143-149, 2022 Feb.
Article En | MEDLINE | ID: mdl-33969534

Thiazolidinediones are well-known anti-diabetic drugs. However, they are not widely used due to their cardiotoxic effects. Therefore, in this study, we aimed to determine the molecular toxicological alterations induced in the mouse hearts after thiazolidinedione administration. Balb/c mice received doses clinically equivalent to those given to humans of the most commonly used thiazolidinediones, pioglitazone, and rosiglitazone for 30 days. After that, RNA samples were isolated from the hearts. The mRNA expression of cytochrome (cyp) p450 genes that synthesize the cardiotoxic 20-hydroxyeicosatetraenoic acid (20-HETE) in addition to 92 cardiotoxicity biomarker genes were analyzed using quantitative polymerase chain reaction array technique. The analysis demonstrated that thiazolidinediones caused a significant upregulation (p < 0.5) of the mRNA expression of cyp1a1, cyp4a12, itpr1, ccl7, ccr1, and b2 m genes. In addition, thiazolidinediones caused a significant (p < 0.05) downregulation of the mRNA expression of adra2a, bsn, col15a1, fosl1, Il6, bpifa1, plau, and reg3b genes. The most affected gene was itpr1 gene, which was upregulated by pioglitazone and rosiglitazone by sevenfold and 3.5-fold, respectively. In addition, pioglitazone caused significant upregulation of (p < 0.05) hamp, ppbp, psma2, sik1, timp1, and ucp1 genes, which were not affected significantly (p > 0.05) by rosiglitazone administration. In conclusion, this study showed that thiazolidinediones induce toxicological molecular alterations in the mouse hearts, such as the induction of cyp450s that synthesize 20-HETE, chemokine activation, inflammatory responses, blood clotting, and oxidative stress. These findings may help us understand the mechanism of cardiotoxicity involved in thiazolidinedione administration.


Pharmaceutical Preparations , Thiazolidinediones , Animals , Glycoproteins , Hypoglycemic Agents/toxicity , Mice , Phosphoproteins , Rosiglitazone/toxicity , Thiazolidinediones/toxicity
...