Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Sci Rep ; 14(1): 7920, 2024 04 04.
Article En | MEDLINE | ID: mdl-38575642

Blood safety is a critical aspect of healthcare systems worldwide involving rigorous screening, testing, and processing protocols to minimize the risk of transfusion-transmitted infections (TTIs). The present study offers a comprehensive assessment of the prevalence of hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), and syphilis among blood donors in southern Thailand. It explores the consequences of the COVID-19 pandemic on the blood transfusion service, donor characteristics, and the prevalence of TTIs. A retrospective analysis of 65,511 blood donors between 2018 and 2022 was conducted at Songklanagarind Hospital, Thailand. The socio-demographic characteristics of the donors were examined using the Chi-square test to assess the relationship between TTIs serological positivity and donor characteristics. The donors were divided into pre-COVID-19 (2018-2019) and during COVID-19 (2020-2022) groups to evaluate the impacts of COVID-19. The study found that HBV had the highest overall prevalence at 243 per hundred thousand (pht), followed by syphilis (118 pht), HCV (32 pht), and HIV (31 pht) over a five-year period of study. After COVID-19, the prevalence of HBV decreased by 21.8%; HCV decreased by 2.1%; HIV increased by 36.4%; and syphilis increased by 9.2%. The socio-demographic characteristics and TTIs prevalence were significantly altered over time. This study provides insights into blood donor characteristics and TTIs prevalence in southern Thailand, highlighting the understanding of the impact of COVID-19 on the spread of TTIs.


COVID-19 , HIV Infections , Hepatitis B , Hepatitis C , Syphilis , Transfusion Reaction , Humans , Blood Donors , Syphilis/epidemiology , Hepatitis B/epidemiology , Hepatitis B/diagnosis , Seroepidemiologic Studies , Retrospective Studies , Pandemics , Thailand/epidemiology , HIV Infections/epidemiology , HIV Infections/diagnosis , COVID-19/epidemiology , Hepatitis C/epidemiology , Hepatitis C/diagnosis
2.
Chem Res Toxicol ; 36(5): 757-768, 2023 05 15.
Article En | MEDLINE | ID: mdl-37074725

Carbamazepine (CBZ) is an aromatic anticonvulsant known to cause drug hypersensitivity reactions, which range in severity from relatively mild maculopapular exanthema to potentially fatal Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS-TEN). These reactions are known to be associated with human leukocyte antigen (HLA) class I alleles, and CBZ interacts preferentially with the related HLA proteins to activate CD8+ T-cells. This study aimed to evaluate the contribution of HLA class II in the effector mechanism(s) of CBZ hypersensitivity. CBZ-specific T-cells clones were generated from two healthy donors and two hypersensitive patients with high-risk HLA class I markers. Phenotype, function, HLA allele restriction, response pathways, and cross-reactivity of CBZ-specific T-cells were assessed using flow cytometry, proliferation analysis, enzyme-linked immunosorbent spot, and enzyme-linked immunosorbent assay. The association between HLA class II allele restriction and CBZ hypersensitivity was reviewed using Allele Frequency Net Database. Forty-four polyclonal CD4+ CBZ-specific T-cell clones were generated and found to be restricted to HLA-DR, particularly HLA-DRB1*07:01. This CD4+-mediated response proceeded through a direct pharmacological interaction between CBZ and HLA-DR molecules. Similar to the CD8+ response, CBZ-stimulated CD4+ clones secreted granulysin, a key mediator of SJS-TEN. Our database review revealed an association between HLA-DRB1*07:01 and CBZ-induced SJS-TEN. These findings implicate HLA class II antigen presentation as an additional pathogenic factor for CBZ hypersensitivity reactions. Both HLA class II molecules and drug-responsive CD4+ T-cells should be evaluated further to gain better insights into the pathogenesis of drug hypersensitivity reactions.


Drug Hypersensitivity , Stevens-Johnson Syndrome , Humans , CD8-Positive T-Lymphocytes , HLA-DRB1 Chains/genetics , Carbamazepine/adverse effects , Anticonvulsants/adverse effects , Drug Hypersensitivity/genetics , HLA Antigens , Stevens-Johnson Syndrome/genetics , CD4-Positive T-Lymphocytes , HLA-B Antigens
3.
Chem Res Toxicol ; 35(11): 2122-2132, 2022 11 21.
Article En | MEDLINE | ID: mdl-36137197

ß-Lactamase inhibitors such as clavulanic acid and tazobactam were developed to overcome ß-lactam antibiotic resistance. Hypersensitivity reactions to these drugs have not been studied in detail, and the antigenic determinants that activate T-cells have not been defined. The objectives of this study were to (i) characterize clavulanate- and tazobactam-responsive T-cells from hypersensitive patients, (ii) explore clavulanate and tazobactam T-cell crossreactivity, and (iii) define the antigenic determinants that contribute to T-cell reactivity. Antigen specificity, pathways of T-cell activation, and crossreactivity with clavulanate- and tazobactam-specific T-cell clones were assessed by proliferation and cytokine release assays. Antigenic determinants were analyzed by mass spectrometry-based proteomics methods. Clavulanate- and tazobactam-responsive CD4+ T-cell clones were stimulated to proliferate and secrete IFN-γ in an MHC class II-restricted and dose-dependent manner. T-cell activation with clavulanate- and tazobactam was dependent on antigen presenting cells because their fixation prevented the T-cell response. Strong crossreactivity was observed between clavulanate- and tazobactam-T-cells; however, neither drug activated ß-lactam antibiotic-responsive T-cells. Mass spectrometric analysis revealed that both compounds form multiple antigenic determinants with lysine residues on proteins, including an overlapping aldehyde and hydrated aldehyde adduct with mass additions of 70 and 88 Da, respectively. Collectively, these data show that although clavulanate and tazobactam are structurally distinct, the antigenic determinants formed by both drugs overlap, which explains the observed T-cell cross-reactivity.


T-Lymphocytes , beta-Lactamase Inhibitors , Humans , Clavulanic Acid/pharmacology , Tazobactam , Epitopes , Anti-Bacterial Agents/pharmacology , Aldehydes
4.
Annu Rev Pharmacol Toxicol ; 62: 509-529, 2022 01 06.
Article En | MEDLINE | ID: mdl-34516290

Human leukocyte antigen (HLA) is a hallmark genetic marker for the prediction of certain immune-mediated adverse drug reactions (ADRs). Numerous basic and clinical research studies have provided the evidence base to push forward the clinical implementation of HLA testing for the prevention of such ADRs in susceptible patients. This review explores current translational progress in using HLA as a key susceptibility factor for immune ADRs and highlights gaps in our knowledge. Furthermore, relevant findings of HLA-mediated drug-specific T cell activation are covered, focusing on cellular approaches to link genetic associations to drug-HLA binding as a complementary approach to understand disease pathogenesis.


Drug Hypersensitivity , Drug-Related Side Effects and Adverse Reactions , Alleles , Drug-Related Side Effects and Adverse Reactions/genetics , HLA Antigens/genetics , Humans , Pharmacogenetics
5.
Int J Pediatr ; 2021: 2612846, 2021.
Article En | MEDLINE | ID: mdl-34956371

BACKGROUND: Little is currently known about the genetics of pilomatricoma. A number of studies have reported some evidence that this disease may have a genetic association with mutations of CTNNB1 gene or expression of the beta-catenin protein. In this study, we reviewed literatures involving 30 patients with various genetic syndromes that have been linked to pilomatricoma and found that somatic mutations of the CTNNB1 gene were reported in 67% of patients. Pilomatricoma has been reported in patients with chromosome 9 rearrangements, including 4 patients with tetrasomy 9p syndrome and one patient with partial trisomy 9. In addition to beta-catenin, the expression of bcl2 was observed in pilomatricoma. OBJECTIVES: To report an additional case of tetrasomy 9p syndrome with concurrent pilomatricoma and to examine whether abnormal protein expressions of the CTNNB1 and/or BCL2 genes were present. METHODS: Cytogenetic analysis was carried out on peripheral blood, biopsied skin, and pilomatricoma tissue obtained from a patient with tetrasomy 9p syndrome. Immunohistochemical staining was performed on the pilomatricoma tissue, using beta-catenin and bcl2 monoclonal antibodies. RESULTS: SNP microarray revealed nonmosaic gain of the short arm of chromosome 9. A nonmosaic isodicentric chromosome 9 was identified in the peripheral blood but this rearranged chromosome was detected in only 8.3% of the skin fibroblasts. Chromosomal abnormalities were not detected in the pilomatricoma nor expression of beta-catenin or bcl2 proteins in our patient. CONCLUSION: Pilomatricoma could be a new clinical feature associated with tetrasomy 9p syndrome; however, we found no evidence of tetrasomy 9p or abnormal beta-catenin or bcl2 proteins of the CTNNB1 and BCL2 genes in our pilomatricoma patient.

6.
Pharmacogenomics J ; 21(6): 682-690, 2021 12.
Article En | MEDLINE | ID: mdl-34175889

Aromatic antiepileptic drugs (AEDs)-induced cutaneous adverse drug reactions (cADRs) add up to the limited use of the AEDs in the treatment and prevention of seizures. Human leukocyte antigen-B (HLA-B) alleles have been linked to AEDs-induced cADRs. We investigated the association between cADRs (including Stevens-Johnson syndrome; SJS/toxic epidermal necrolysis; TEN, drug reaction with eosinophilia and systemic symptoms; DRESS, and Maculopapular eruption; MPE) caused by AEDs (phenytoin, carbamazepine, lamotrigine, phenobarbital and oxcarbazepine) and HLA-B alleles in Thai population. Through the case-control study, 166 patients with AEDs-induced cADRs, 426 AEDs-tolerant patients (AEDs-tolerant controls), and 470 healthy subjects (Thai population) were collected. The HLA genotypes were detected using the polymerase chain reaction-sequence specific oligonucleotide probe (PCR-SSOP) method. We also performed a meta-analysis with these data and other populations. The carrier rate of HLA-B*15:02 was significantly different between AEDs-induced cADRs group and AEDs-tolerant group (Odds ratio; OR 4.28, 95% Confidence interval; CI 2.64-6.95, p < 0.001), AEDs-induced cADRs group and Thai population (OR 2.15, 95%CI 1.41-3.29, p < 0.001). In meta-analysis showed the strong association HLA-B*15:02 with AEDs-induced cADRs (OR 4.77, 95%CI 1.79-12.73, p < 0.001). Furthermore, HLA-B*15:02 was associated with SJS/TEN induced by AEDs (OR 10.28, 95%CI 6.50-16.28, p < 0.001) Phenytoin (OR 4.12, 95%CI 1.77-9.59, p = 0.001) and carbamazepine (OR 137.69, 95%CI 50.97-371.98, p < 0.001). This study demonstrated that genetic association for AEDs-induced cADRs was phenotype-specific. A strong association between HLA-B*15:02 and AEDs-induced SJS/TEN was demonstrated with an OR of 10.79 (95%CI 5.50-21.16, p < 0.001) when compared with AEDs-tolerant group. On the other hand, the carrier rates of HLA-B*08:01, HLA-B*13:01, and HLA-B*56:02 were significantly higher in the DRESS group compared with the AEDs-tolerant group (p = 0.029, 0.007, and 0.017, respectively). The HLA-B*15:02 allele may represent a risk factor for AEDs-induced cADRs.


Anticonvulsants/adverse effects , Drug Eruptions/genetics , HLA-B Antigens/genetics , Heterocyclic Compounds/adverse effects , Case-Control Studies , Drug Eruptions/diagnosis , Drug Eruptions/immunology , Gene Frequency , Genotype , Humans , Risk Assessment , Risk Factors , Thailand
7.
Front Immunol ; 12: 658593, 2021.
Article En | MEDLINE | ID: mdl-33995375

HLA-B*13:01-positive patients in Thailand can develop frequent co-trimoxazole hypersensitivity reactions. This study aimed to characterize drug-specific T cells from three co-trimoxazole hypersensitive patients presenting with either Stevens-Johnson syndrome or drug reaction with eosinophilia and systemic symptoms. Two of the patients carried the HLA allele of interest, namely HLA-B*13:01. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones were generated from T cell lines of co-trimoxazole hypersensitive HLA-B*13:01-positive patients. Clones were characterized for antigen specificity and cross-reactivity with structurally related compounds by measuring proliferation and cytokine release. Surface marker expression was characterized via flow cytometry. Mechanistic studies were conducted to assess pathways of T cell activation in response to antigen stimulation. Peripheral blood mononuclear cells from all patients were stimulated to proliferate and secrete IFN-γ with nitroso sulfamethoxazole. All sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones expressed the CD4+ phenotype and strongly secreted IL-13 as well as IFN-γ, granzyme B and IL-22. No secretion of IL-17 was observed. A number of nitroso sulfamethoxazole-specific clones cross-reacted with nitroso dapsone but not sulfamethoxazole whereas sulfamethoxazole specific clones cross-reacted with nitroso sulfamethoxazole only. The nitroso sulfamethoxazole specific clones were activated in both antigen processing-dependent and -independent manner, while sulfamethoxazole activated T cell responses via direct HLA binding. Furthermore, activation of nitroso sulfamethoxazole-specific, but not sulfamethoxazole-specific, clones was blocked with glutathione. Sulfamethoxazole and nitroso sulfamethoxazole specific T cell clones from hypersensitive patients were CD4+ which suggests that HLA-B*13:01 is not directly involved in the iatrogenic disease observed in co-trimoxazole hypersensitivity patients.


Drug Hypersensitivity/etiology , Gene Expression , HLA-B13 Antigen/genetics , HLA-B13 Antigen/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Trimethoprim, Sulfamethoxazole Drug Combination/adverse effects , Adult , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Drug Hypersensitivity/metabolism , Female , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/immunology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , T-Cell Antigen Receptor Specificity
8.
J Invest Dermatol ; 141(10): 2412-2425.e2, 2021 10.
Article En | MEDLINE | ID: mdl-33798536

HLA-B∗13:01 is associated with dapsone (DDS)-induced hypersensitivity, and it has been shown that CD4+ and CD8+ T cells are activated by DDS and its nitroso metabolite (nitroso dapsone [DDS-NO]). However, there is a need to define the importance of the HLA association in the disease pathogenesis. Thus, DDS- and DDS-NO‒specific CD8+ T-cell clones (TCCs) were generated from hypersensitive patients expressing HLA-B∗13:01 and were assessed for phenotype and function, HLA allele restriction, and killing of target cells. CD8+ TCCs were stimulated to proliferate and secrete effector molecules when exposed to DDS and/or DDS-NO. DDS-responsive and several DDS-NO‒responsive TCCs expressing a variety of TCR sequences displayed HLA class-I restriction, with the drug (metabolite) interacting with multiple HLA-B alleles. However, activation of certain DDS-NO‒responsive CD8+ TCCs was inhibited with HLA class-II block, with DDS-NO binding to HLA-DQB1∗05:01. These TCCs were of different origin but expressed TCRs displaying the same amino acid sequences. They were activated through a hapten pathway; displayed CD45RO, CD28, PD-1, and CTLA-4 surface molecules; secreted the same panel of effector molecules as HLA class-I‒restricted TCCs; but displayed a lower capacity to lyse target cells. To conclude, DDS and DDS-NO interact with a number of HLA molecules to activate CD8+ TCCs, with HLA class-II‒restricted CD8+ TCCs that display hybrid CD4‒CD8 features also contributing to the promiscuous immune response that develops in patients.


CD8-Positive T-Lymphocytes/immunology , Dapsone/pharmacology , Drug Hypersensitivity Syndrome/immunology , Histocompatibility Antigens Class II/genetics , Adult , Alleles , CD8-Positive T-Lymphocytes/drug effects , Cytotoxicity, Immunologic , Female , Humans , Lymphocyte Activation/drug effects , Male , Young Adult
9.
Nat Commun ; 12(1): 2055, 2021 04 06.
Article En | MEDLINE | ID: mdl-33824342

Identification of protective T cell responses against SARS-CoV-2 requires distinguishing people infected with SARS-CoV-2 from those with cross-reactive immunity to other coronaviruses. Here we show a range of T cell assays that differentially capture immune function to characterise SARS-CoV-2 responses. Strong ex vivo ELISpot and proliferation responses to multiple antigens (including M, NP and ORF3) are found in 168 PCR-confirmed SARS-CoV-2 infected volunteers, but are rare in 119 uninfected volunteers. Highly exposed seronegative healthcare workers with recent COVID-19-compatible illness show T cell response patterns characteristic of infection. By contrast, >90% of convalescent or unexposed people show proliferation and cellular lactate responses to spike subunits S1/S2, indicating pre-existing cross-reactive T cell populations. The detection of T cell responses to SARS-CoV-2 is therefore critically dependent on assay and antigen selection. Memory responses to specific non-spike proteins provide a method to distinguish recent infection from pre-existing immunity in exposed populations.


Antiviral Agents/pharmacology , COVID-19/immunology , COVID-19/virology , Cross Reactions/immunology , Immunoassay/methods , SARS-CoV-2/physiology , T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , Cell Proliferation , Cytokines/metabolism , HEK293 Cells , Health Personnel , Humans , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/metabolism , Pandemics , Peptides/metabolism , SARS-CoV-2/drug effects
10.
Toxicol Sci ; 179(1): 95-107, 2021 01 06.
Article En | MEDLINE | ID: mdl-33078835

Exposure to tolvaptan is associated with a significant risk of liver injury in a small fraction of patients with autosomal dominant polycystic kidney disease. The observed delayed onset of liver injury of between 3 and 18 months after commencing tolvaptan treatment, along with rapid recurrence of symptoms following re-challenge is indicative of an adaptive immune attack. This study set out to assess the intrinsic immunogenicity of tolvaptan and pathways of drug-specific T-cell activation using in vitro cell culture platforms. Tolvaptan (n = 7), as well as oxybutyric (DM-4103, n = 1) and hydroxybutyric acid (DM-4107, n = 18) metabolite-specific T-cell clones were generated from tolvaptan naive healthy donor peripheral blood mononuclear cells. Tolvaptan and DM-4103 T-cell clones could also be activated with DM-4107, whereas T-cell clones originally primed with DM-4107 were highly specific to this compound. A signature cytokine profile (IFN-γ, IL-13, granzyme B, and perforin) for almost all T-cell clones was identified. Mechanistically, compound-specific T-cell clone activation was dependent on the presence of soluble drug and could occur within 4 h of drug exposure, ruling out a classical hapten mechanism. However, antigen processing dependence drug presentation was indicated in many T-cell clones. Collectively these data show that tolvaptan-associated liver injury may be attributable to an adaptive immune attack upon the liver, with tolvaptan- and metabolite-specific T cells identified as candidate effector cells in such etiology.


Chemical and Drug Induced Liver Injury , Pharmaceutical Preparations , Polycystic Kidney, Autosomal Dominant , Antidiuretic Hormone Receptor Antagonists , Chemical and Drug Induced Liver Injury/etiology , Humans , Leukocytes, Mononuclear , T-Lymphocytes , Tolvaptan/toxicity
11.
Chem Res Toxicol ; 33(11): 2745-2748, 2020 11 16.
Article En | MEDLINE | ID: mdl-33085478

Tolvaptan is an effective drug for the treatment of autosomal dominant polycystic kidney disease, but its use is associated with a significant risk of liver injury in a small number of patients. Herein we describe the presence of tolvaptan- and tolvaptan-metabolite-responsive T cell clones within the peripheral circulation of patients with liver injury. Drug treatment of the clones resulted in a proliferative response and secretion of IFN-γ, IL-13, and the cytolytic molecule granzyme B. Future work should explore pathways of tolvaptan driven T cell activation and the role of T cells in the disease pathogenesis.


Chemical and Drug Induced Liver Injury , T-Lymphocytes/drug effects , Tolvaptan/adverse effects , Adult , Cell Proliferation/drug effects , Female , Humans , Male , Middle Aged , Molecular Structure , Tolvaptan/chemistry , Tolvaptan/metabolism
12.
J Immunol Res ; 2018: 2780272, 2018.
Article En | MEDLINE | ID: mdl-29546073

The HLA-B∗15:02 allele has been reported to have a strong association with carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) in Thai patients. The HLA-B alleles associated with carbamazepine-induced maculopapular exanthema (MPE) and the drug reaction with eosinophilia and systemic symptoms (DRESS) among the Thai population have never been reported. The aim of the present study was to carry out an analysis of the involvement of HLA-B alleles in carbamazepine-induced cutaneous adverse drug reactions (cADRs) in the Thai population. A case-control study was performed by genotyping the HLA-B alleles of Thai carbamazepine-induced hypersensitivity reaction patients (17 MPE, 16 SJS/TEN, and 5 DRESS) and 271 carbamazepine-tolerant controls. We also recruited 470 healthy Thai candidate subjects who had not taken carbamazepine. HLA-B∗15:02 showed a significant association with carbamazepine-induced MPE (P = 0.0022, odds ratio (OR) (95% confidence interval [CI]) = 7.27 (2.04-25.97)) and carbamazepine-induced SJS/TEN (P = 4.46 × 10-13; OR (95% CI) = 70.91(19.67-255.65)) when compared with carbamazepine-tolerant controls. Carbamazepine-induced SJS/TEN also showed an association with HLA-B∗15:21 allele (P = 0.013; OR (95% CI) = 9.54 (1.61-56.57)) when compared with carbamazepine-tolerant controls. HLA-B∗58:01 allele was significantly related to carbamazepine-induced MPE (P = 0.007; OR (95% CI) = 4.73 (1.53-14.66)) and DRESS (P = 0.0315; OR (95% CI) = 7.55 (1.20-47.58)) when compared with carbamazepine-tolerant controls. These alleles may serve as markers to predict carbamazepine-induced cADRs in the Thai population.


Carbamazepine/adverse effects , Drug Eruptions/genetics , Drug Hypersensitivity Syndrome/genetics , Genotype , HLA-B Antigens/genetics , HLA-B15 Antigen/genetics , Stevens-Johnson Syndrome/genetics , Adolescent , Adult , Alleles , Carbamazepine/therapeutic use , Case-Control Studies , Child , Female , Gene Frequency , Genetic Association Studies , Humans , Male , Middle Aged , Polymorphism, Genetic , Skin/pathology , Thailand , Young Adult
13.
Sci Rep ; 7: 45553, 2017 03 30.
Article En | MEDLINE | ID: mdl-28358139

HLA-B*15:02 screening before carbamazepine (CBZ) prescription in Asian populations is the recommended practice to prevent CBZ-induced Stevens-Johnson syndrome (CBZ-SJS). However, a number of patients have developed CBZ-SJS even having no HLA-B*15:02. Herein, we present the case of a Thai patient who had a negative HLA-B*15:02 screening result but later developed CBZ-SJS. Further HLA typing revealed HLA-B*15:21/B*13:01. HLA-B*15:21 is a member of the HLA-B75 serotype and is commonly found in Southeast Asian populations. Based on this case, we hypothesised that if all HLA-B*15:02 carriers were prevented from CBZ prescription, another common HLA-B75 serotype marker would show its association with CBZ-SJS. To test this hypothesis, we pooled data from previous association studies in Asian populations, excluded all cases with HLA-B*15:02, and analysed the association significance of HLA-B75 serotype markers. A significant association was found between CBZ-SJS and HLA-B*15:21 and HLA-B*15:11. We also applied an in silico analysis and found that all HLA-B75 serotype molecules shared similar capability in binding the CBZ molecule. In summary, this report provides the first evidence of a positive association between HLA-B*15:21 and CBZ-SJS and the first in silico analysis of CBZ binding sites and details of the molecular behaviour of HLA-B75 molecule to explain its molecular action.


Carbamazepine/adverse effects , HLA-B15 Antigen/genetics , Stevens-Johnson Syndrome/genetics , Adolescent , Amino Acid Sequence , Asian People , Carbamazepine/metabolism , Computer Simulation , HLA-B15 Antigen/metabolism , Humans , Male , Protein Binding , Serogroup
14.
PLoS One ; 11(11): e0165859, 2016.
Article En | MEDLINE | ID: mdl-27812158

To provide maternal age-specific rates for trisomy 21 (T21) and common autosomal trisomies (including trisomies 21, 18 and 13) in fetuses. We retrospectively reviewed prenatal cytogenetic results obtained between 1990 and 2009 in Songklanagarind Hospital, a university teaching hospital, in southern Thailand. Maternal age-specific rates of T21 and common autosomal trisomies were established using different regression models, from which only the fittest models were used for the study. A total of 17,819 records were included in the statistical analysis. The fittest models for predicting rates of T21 and common autosomal trisomies were regression models with 2 parameters (Age and Age2). The rate of T21 ranged between 2.67 per 1,000 fetuses at the age of 34 and 71.06 per 1,000 at the age of 48. The rate of common autosomal trisomies ranged between 4.54 per 1,000 and 99.65 per 1,000 at the same ages. This report provides the first maternal age-specific rates for T21 and common autosomal trisomies fetuses in a Southeast Asian population and the largest case number of fetuses have ever been reported in Asians.


Chromosomes, Human, Pair 13/genetics , Chromosomes, Human, Pair 18/genetics , Down Syndrome/diagnosis , Fetus , Maternal Age , Trisomy/diagnosis , Adult , Down Syndrome/epidemiology , Humans , Live Birth , Middle Aged , Models, Statistical , Thailand/epidemiology
15.
PLoS One ; 11(5): e0155907, 2016.
Article En | MEDLINE | ID: mdl-27196420

Currently, there are three published HLA-B*15:02 screening methods for prevention of carbamazepine-induced severe drug reactions in Asian populations. To analyze available HLA-B*15:02 screening methods, we compared four screening methods, including a multiplex PCR method, a nested PCR method, a LAMP method and our new in-house PCR-dot blot hybridization method. These methods were reviewed regarding their sensitivity, specificity, false positivity and technical considerations. Possible false positive (FP) alleles and genotypes were checked regarding the primers and probes designs, using the IMGT/HLA database. Expected FP rates in Asian populations were predicted using the Allele Frequencies Net Database. All methods had a sensitivity of more than 99.9%, although giving FP results to certain very rare alleles and genotypes. The multiplex PCR method was the only test that gave FP results to certain genotypes of HLA-B*15:13, the allele which is prevalent in Southeast Asian populations. In conclusion, the nested PCR, LAMP and our in-house methods could be applied in various Asian populations, but the multiplex PCR, or any test with FP to HLA-B*15:13, should be applied with caution in the Southeast Asian populations.


Carbamazepine/adverse effects , Drug Hypersensitivity/prevention & control , Drug-Related Side Effects and Adverse Reactions/prevention & control , HLA-B15 Antigen/genetics , Molecular Diagnostic Techniques/methods , Alleles , Asian People , Case-Control Studies , Drug Hypersensitivity/genetics , Drug-Related Side Effects and Adverse Reactions/genetics , False Positive Reactions , Gene Frequency , HLA-B15 Antigen/immunology , Humans , Molecular Diagnostic Techniques/standards , Nucleic Acid Hybridization/methods , Polymerase Chain Reaction/methods
16.
Genet Res Int ; 2016: 8319287, 2016.
Article En | MEDLINE | ID: mdl-27042357

Fragile X syndrome (FXS) is the most common inherited intellectual disability. It is caused by the occurrence of more than 200 pure CGG repeats in the FMR1 gene. Normal individuals have 6-54 CGG repeats with two or more stabilizing AGG interruptions occurring once every 9- or 10-CGG-repeat blocks in various populations. However, the unique (CGG)6AGG pattern, designated as 6A, has been exclusively reported in Asians. To examine the genetic background of AGG interruptions in the CGG repeats of the FMR1 gene, we studied 8 SNPs near the CGG repeats in 176 unrelated Thai males with 19-56 CGG repeats. Of these 176 samples, we identified AGG interruption patterns from 95 samples using direct DNA sequencing. We found that the common CGG repeat groups (29, 30, and 36) were associated with 3 common haplotypes, GCGGATAA (Hap A), TTCATCGC (Hap C), and GCCGTTAA (Hap B), respectively. The configurations of 9A9A9, 10A9A9, and 9A9A6A9 were commonly found in chromosomes with 29, 30, and 36 CGG repeats, respectively. Almost all chromosomes with Hap B (22/23) carried at least one 6A pattern, suggesting that the 6A pattern is linked to Hap B and may have originally occurred in the ancestors of Asian populations.

...