Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793274

RESUMEN

An alkali-silica reaction (ASR) is a chemical process that leads to the formation of an expansive gel, potentially causing durability issues in concrete structures. This article investigates the properties and behaviour of ASR products in mortar with the addition of low-purity calcined clay as an additional material. This study includes an evaluation of the expansion and microstructural characteristics of the mortar, as well as an analysis of the formation and behaviour of ASR products with different contents of calcined clay. Expansion tests of the mortar beam specimens were conducted according to ASTM C1567, and a detailed microscopic analysis of the reaction products was performed. Additionally, their mechanical properties were determined using nanoindentation. This study reveals that with an increasing calcined clay content, the amount of the crystalline form of the ASR gel decreases, while the nanohardness increases. The Young's modulus of the amorphous ASR products ranged from 5 to 12 GPa, while the nanohardness ranged from 0.41 to 0.67 GPa. The obtained results contribute to a better understanding of how the incorporation of low-purity calcined clay influences the ASR in mortar, providing valuable insights into developing sustainable and durable building materials for the construction industry.

2.
Materials (Basel) ; 14(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34772164

RESUMEN

In this study, Atomic Force Microscopy-based nanoindentation (AFM-NI) with diamond-like carbon (DLC) coated tip was used to analyze the mechanical response of poly(methyl methacrylate) (PMMA) thin films (thicknesses: 235 and 513 nm) on a silicon substrate. Then, Oliver and Pharr (OP) model was used to calculate hardness and Young's modulus, while three different Static Linear Solid models were used to fit the creep curve and measure creep compliance, Young's modulus, and viscosity. Values were compared with each other, and the best-suited method was suggested. The impact of four temperatures below the glass transition temperature and varied indentation depth on the mechanical properties has been analyzed. The results show high sensitivity on experiment parameters and there is a clear difference between thin and thick film. According to the requirements in the nanoimprint lithography (NIL), the ratio of hardness at demolding temperature to viscosity at molding temperature was introduced as a simple parameter for prediction of resist suitability for NIL. Finally, thinner PMMA film was tentatively attributed as more suitable for NIL.

3.
Materials (Basel) ; 14(12)2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34207739

RESUMEN

Particulate-reinforced metal matrix composites (PRMMCs) with excellent tribo-mechanical properties are important engineering materials and have attracted constant scientific interest over the years. Among the various fabrication methods used, co-electrodeposition (CED) is valued due to its efficiency, accuracy, and affordability. However, the way this easy-to-perform process is carried out is inconsistent, with researchers using different methods for volume fraction measurement and tribo-mechanical testing, as well as failing to carry out proper interface characterization. The main contribution of this work lies in its determination of the gaps in the tribo-mechanical research of CED PRMMCs. For mechanical properties, hardness is described with respect to measurement methods, models, and experiments concerning CED PRMMCs. The tribology of such composites is described, taking into account the reinforcement volume fraction, size, and composite fabrication route (direct/pulsed current). Interfacial aspects are discussed using experimental direct strength measurements. Each part includes a critical overview, and future prospects are anticipated. This review paper provides an overview of the tribo-mechanical parameters of Ni-based co-electrodeposited particulate-reinforced metal matrix composite coatings with an interfacial viewpoint and a focus on hardness, wear, and friction behavior.

4.
ACS Appl Mater Interfaces ; 12(18): 21070-21079, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32290645

RESUMEN

Development of high-entropy alloy (HEA) films is a promising and cost-effective way to incorporate these materials of superior properties in harsh environments. In this work, a refractory high-entropy alloy (RHEA) film of equimolar CuMoTaWV was deposited on silicon and 304 stainless-steel substrates using DC-magnetron sputtering. A sputtering target was developed by partial sintering of an equimolar powder mixture of Cu, Mo, Ta, W, and V using spark plasma sintering. The target was used to sputter a nanocrystalline RHEA film with a thickness of ∼900 nm and an average grain size of 18 nm. X-ray diffraction of the film revealed a body-centered cubic solid solution with preferred orientation in the (110) directional plane. The nanocrystalline nature of the RHEA film resulted in a hardness of 19 ± 2.3 GPa and an elastic modulus of 259 ± 19.2 GPa. A high compressive strength of 10 ± 0.8 GPa was obtained in nanopillar compression due to solid solution hardening and grain boundary strengthening. The adhesion between the RHEA film and 304 stainless-steel substrates was increased on annealing. For the wear test against the E52100 alloy steel (Grade 25, 700-880 HV) at 1 N load, the RHEA film showed an average coefficient of friction (COF) and wear rate of 0.25 (RT) and 1.5 (300 °C), and 6.4 × 10-6 mm3/N m (RT) and 2.5 × 10-5 mm3/N m (300 °C), respectively. The COF was found to be 2 times lower at RT and wear rate 102 times lower at RT and 300 °C than those of 304 stainless steel. This study may lead to the processing of high-entropy alloy films for large-scale industrial applications.

5.
Nanotechnology ; 31(28): 285703, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32244241

RESUMEN

In this work we apply N+ ion irradiation on vertically aligned carbon nanotube (VACNT) arrays in order to increase the number of connections and joints in the CNT network. The ions energy was 50 keV and fluence 5 × 1017 ions cm-2. The film was 160 µm thick. SEM images revealed the ion irradiation altered the carbon bonding and created a sponge-like, brittle structure at the surface of the film, with the ion irradiation damage region extending ∼4 µm in depth. TEM images showed the brittle structure consists of amorphous carbon forming between nanotubes. The significant enhancement of mechanical properties of the irradiated sample studied by the cyclic nanoindentation with a flat punch indenter was observed. Irradiation on the VACNT film made the structure stiffer, resulted in a higher percentage recovery, and reduced the energy dissipation under compression. The results are encouraging for further studies which will lead to create a class of materials-ion-irradiated VACNT films-which after further research may find application in storage or harvesting energy at the micro/nanoscale.

6.
Rev Sci Instrum ; 89(10): 105111, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399778

RESUMEN

In this paper, we present a device which is very sensitive for small changes in the viscosity of the investigated fluid. The main part of the device is a piezo-electric bimorph which consists of the brass shim with two piezo-ceramic layers on the opposite sides. One of them is responsible for generating vibrations, whereas the second one is meant to measure system response which is produced by the damping properties of the surrounding fluid. During the experiment, the cylindrical bar is forced to move by the series of sinusoidal waves with different frequencies and at constant amplitudes. The probe is immersed in the fluid and then the amplitude vs frequency and phase vs frequency curves are obtained. Next, one can determine the viscosity according to a proper mathematical model. The resonant frequency is related to the damping coefficient which depends on the viscosity of the surrender fluid and immersion depth of the probe. The coefficients necessary for calculating viscosity are obtained by fitting the resonance curve to the amplitude vs frequency data obtained from the experiment. The device has been applied to study the anisotropy of magnetorheological fluids. The weak anisotropy of viscosity has been observed. The highest value of viscosity was observed in the case of viscosity measurement in the direction orthogonal to the magnetic field and the lowest in the direction parallel to the magnetic field.

7.
Ultramicroscopy ; 182: 1-9, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28623777

RESUMEN

In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA