Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106069

RESUMEN

How cells respond to dynamic environmental changes is crucial for understanding fundamental biological processes and cell physiology. In this study, we developed an experimental and quantitative analytical framework to explore how dynamic stress gradients that change over time regulate cellular volume, signaling activation, and growth phenotypes. Our findings reveal that gradual stress conditions substantially enhance cell growth compared to conventional acute stress. This growth advantage correlates with a minimal reduction in cell volume dependent on the dynamic of stress. We explain the growth phenotype with our finding of a logarithmic signal transduction mechanism in the yeast Mitogen-Activated Protein Kinase (MAPK) osmotic stress response pathway. These insights into the interplay between gradual environments, cell volume change, dynamic cell signaling, and growth, advance our understanding of fundamental cellular processes in gradual stress environments.

2.
STAR Protoc ; 2(3): 100660, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34286292

RESUMEN

This protocol provides a step-by-step approach to perturb single cells with time-varying stimulation profiles, collect distinct signaling responses, and use these to infer a system of ordinary differential equations to capture and predict dynamics of protein-protein regulation in signal transduction pathways. The models are validated by predicting the signaling activation upon new cell stimulation conditions. In comparison to using standard step-like stimulations, application of diverse time-varying cell stimulations results in better inference of model parameters and substantially improves model predictions. For complete details on the use and results of this protocol, please refer to Jashnsaz et al. (2020).


Asunto(s)
Modelos Biológicos , Saccharomyces cerevisiae , Transducción de Señal/fisiología , Biología de Sistemas/métodos , Algoritmos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33443180

RESUMEN

Cells are exposed to changes in extracellular stimulus concentration that vary as a function of rate. However, how cells integrate information conveyed from stimulation rate along with concentration remains poorly understood. Here, we examined how varying the rate of stress application alters budding yeast mitogen-activated protein kinase (MAPK) signaling and cell behavior at the single-cell level. We show that signaling depends on a rate threshold that operates in conjunction with stimulus concentration to determine the timing of MAPK signaling during rate-varying stimulus treatments. We also discovered that the stimulation rate threshold and stimulation rate-dependent cell survival are sensitive to changes in the expression levels of the Ptp2 phosphatase, but not of another phosphatase that similarly regulates osmostress signaling during switch-like treatments. Our results demonstrate that stimulation rate is a regulated determinant of cell behavior and provide a paradigm to guide the dissection of major stimulation rate dependent mechanisms in other systems.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Presión Osmótica , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
4.
iScience ; 23(10): 101565, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33083733

RESUMEN

Computationally understanding the molecular mechanisms that give rise to cell signaling responses upon different environmental, chemical, and genetic perturbations is a long-standing challenge that requires models that fit and predict quantitative responses for new biological conditions. Overcoming this challenge depends not only on good models and detailed experimental data but also on the rigorous integration of both. We propose a quantitative framework to perturb and model generic signaling networks using multiple and diverse changing environments (hereafter "kinetic stimulations") resulting in distinct pathway activation dynamics. We demonstrate that utilizing multiple diverse kinetic stimulations better constrains model parameters and enables predictions of signaling dynamics that would be impossible using traditional dose-response or individual kinetic stimulations. To demonstrate our approach, we use experimentally identified models to predict signaling dynamics in normal, mutated, and drug-treated conditions upon multitudes of kinetic stimulations and quantify which proteins and reaction rates are most sensitive to which extracellular stimulations.

5.
Sci Rep ; 9(1): 10129, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31300695

RESUMEN

Cells of any organism are consistently exposed to changes over time in their environment. The kinetics by which these changes occur are critical for the cellular response and fate decision. It is therefore important to control the temporal changes of extracellular stimuli precisely to understand biological mechanisms in a quantitative manner. Most current cell culture and biochemical studies focus on instant changes in the environment and therefore neglect the importance of kinetic environments. To address these shortcomings, we developed two experimental methodologies to precisely control the environment of single cells. These methodologies are compatible with standard biochemistry, molecular, cell and quantitative biology assays. We demonstrate applicability by obtaining time series and time point measurements in both live and fixed cells. We demonstrate the feasibility of the methodology in yeast and mammalian cell culture in combination with widely used assays such as flow cytometry, time-lapse microscopy and single-molecule RNA Fluorescent in-situ Hybridization (smFISH). Our experimental methodologies are easy to implement in most laboratory settings and allows the study of kinetic environments in a wide range of assays and different cell culture conditions.


Asunto(s)
Saccharomyces cerevisiae/citología , Análisis de la Célula Individual/métodos , Algoritmos , Línea Celular , Forma de la Célula , Diseño de Equipo , Regulación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Análisis de Series de Tiempo Interrumpido , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/instrumentación , Imagen de Lapso de Tiempo
6.
Phys Biol ; 15(4): 046002, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29616664

RESUMEN

Sharp chemoattractant (CA) gradient variations near food sources may give rise to dramatic behavioral changes of bacteria neighboring these sources. For instance, marine bacteria exhibiting run-reverse motility are known to form distinct bands around patches (large sources) of chemoattractant such as nutrient-soaked beads while run-and-tumble bacteria have been predicted to exhibit a 'volcano effect' (spherical shell-shaped density) around a small (point) source of food. Here we provide the first minimal model of banding for run-reverse bacteria and show that, while banding and the volcano effect may appear superficially similar, they are different physical effects manifested under different source emission rate (and thus effective source size). More specifically, while the volcano effect is known to arise around point sources from a bacterium's temporal differentiation of signal (and corresponding finite integration time), this effect alone is insufficient to account for banding around larger patches as bacteria would otherwise cluster around the patch without forming bands at some fixed radial distance. In particular, our model demonstrates that banding emerges from the interplay of run-reverse motility and saturation of the bacterium's chemoreceptors to CA molecules and our model furthermore predicts that run-reverse bacteria susceptible to banding behavior should also exhibit a volcano effect around sources with smaller emission rates.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Factores Quimiotácticos/metabolismo , Quimiotaxis , Modelos Biológicos
7.
Phys Biol ; 14(6): 065002, 2017 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-28809162

RESUMEN

Chemoattractant gradients are rarely well-controlled in nature and recent attention has turned to bacterial chemotaxis toward typical bacterial food sources such as food patches or even bacterial prey. In environments with localized food sources reminiscent of a bacterium's natural habitat, striking phenomena-such as the volcano effect or banding-have been predicted or expected to emerge from chemotactic models. However, in practice, from limited bacterial trajectory data it is difficult to distinguish targeted searches from an untargeted search strategy for food sources. Here we use a theoretical model to identify statistical signatures of a targeted search toward point food sources, such as prey. Our model is constructed on the basis that bacteria use temporal comparisons to bias their random walk, exhibit finite memory and are subject to random (Brownian) motion as well as signaling noise. The advantage with using a stochastic model-based approach is that a stochastic model may be parametrized from individual stochastic bacterial trajectories but may then be used to generate a very large number of simulated trajectories to explore average behaviors obtained from stochastic search strategies. For example, our model predicts that a bacterium's diffusion coefficient increases as it approaches the point source and that, in the presence of multiple sources, bacteria may take substantially longer to locate their first source giving the impression of an untargeted search strategy.


Asunto(s)
Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Factores Quimiotácticos/metabolismo , Quimiotaxis , Modelos Biológicos
8.
Biophys J ; 112(6): 1282-1289, 2017 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-28355554

RESUMEN

The Gram-negative Bdellovibrio bacteriovorus (BV) is a model bacterial predator that hunts other bacteria and may serve as a living antibiotic. Despite over 50 years since its discovery, it is suggested that BV probably collides into its prey at random. It remains unclear to what degree, if any, BV uses chemical cues to target its prey. The targeted search problem by the predator for its prey in three dimensions is a difficult problem: it requires the predator to sensitively detect prey and forecast its mobile prey's future position on the basis of previously detected signal. Here instead we find that rather than chemically detecting prey, hydrodynamics forces BV into regions high in prey density, thereby improving its odds of a chance collision with prey and ultimately reducing BV's search space for prey. We do so by showing that BV's dynamics are strongly influenced by self-generated hydrodynamic flow fields forcing BV onto surfaces and, for large enough defects on surfaces, forcing BV in orbital motion around these defects. Key experimental controls and calculations recapitulate the hydrodynamic origin of these behaviors. While BV's prey (Escherichia coli) are too small to trap BV in hydrodynamic orbit, the prey are also susceptible to their own hydrodynamic fields, substantially confining them to surfaces and defects where mobile predator and prey density is now dramatically enhanced. Colocalization, driven by hydrodynamics, ultimately reduces BV's search space for prey from three to two dimensions (on surfaces) even down to a single dimension (around defects). We conclude that BV's search for individual prey remains random, as suggested in the literature, but confined, however-by generic hydrodynamic forces-to reduced dimensionality.


Asunto(s)
Bdellovibrio bacteriovorus/fisiología , Hidrodinámica , Escherichia coli/fisiología , Procesos Estocásticos
9.
Mol Biol Cell ; 27(22): 3601-3615, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27654946

RESUMEN

Photobleaching event counting is a single-molecule fluorescence technique that is increasingly being used to determine the stoichiometry of protein and RNA complexes composed of many subunits in vivo as well as in vitro. By tagging protein or RNA subunits with fluorophores, activating them, and subsequently observing as the fluorophores photobleach, one obtains information on the number of subunits in a complex. The noise properties in a photobleaching time trace depend on the number of active fluorescent subunits. Thus, as fluorophores stochastically photobleach, noise properties of the time trace change stochastically, and these varying noise properties have created a challenge in identifying photobleaching steps in a time trace. Although photobleaching steps are often detected by eye, this method only works for high individual fluorophore emission signal-to-noise ratios and small numbers of fluorophores. With filtering methods or currently available algorithms, it is possible to reliably identify photobleaching steps for up to 20-30 fluorophores and signal-to-noise ratios down to ∼1. Here we present a new Bayesian method of counting steps in photobleaching time traces that takes into account stochastic noise variation in addition to complications such as overlapping photobleaching events that may arise from fluorophore interactions, as well as on-off blinking. Our method is capable of detecting ≥50 photobleaching steps even for signal-to-noise ratios as low as 0.1, can find up to ≥500 steps for more favorable noise profiles, and is computationally inexpensive.


Asunto(s)
Microscopía Fluorescente/métodos , Estadística como Asunto/métodos , Algoritmos , Teorema de Bayes , Fluorescencia , Colorantes Fluorescentes , Fotoblanqueo , Relación Señal-Ruido
10.
PLoS One ; 10(10): e0140428, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26466373

RESUMEN

Experiments have shown that bacteria can be sensitive to small variations in chemoattractant (CA) concentrations. Motivated by these findings, our focus here is on a regime rarely studied in experiments: bacteria tracking point CA sources (such as food patches or even prey). In tracking point sources, the CA detected by bacteria may show very large spatiotemporal fluctuations which vary with distance from the source. We present a general statistical model to describe how bacteria locate point sources of food on the basis of stochastic event detection, rather than CA gradient information. We show how all model parameters can be directly inferred from single cell tracking data even in the limit of high detection noise. Once parameterized, our model recapitulates bacterial behavior around point sources such as the "volcano effect". In addition, while the search by bacteria for point sources such as prey may appear random, our model identifies key statistical signatures of a targeted search for a point source given any arbitrary source configuration.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Quimiotaxis , Modelos Teóricos , Bacterias/efectos de los fármacos , Factores Quimiotácticos/farmacología
11.
Appl Opt ; 51(6): 697-703, 2012 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-22358158

RESUMEN

This work characterizes holographic polymer dispersed liquid crystals (HPDLC) composite material based on a new monomer, urethane trimethacrylate, by fabricating switchable diffraction grating. The highest diffraction efficiency achieved was 90.3%. Details of the fabrication and preliminary results of electro-optical switching of the HPDLC diffraction gratings are presented and discussed based on the functionality of the monomer. These experimental results are explained by means of morphological scanning electron microscopy analyses.

12.
Appl Opt ; 50(22): 4295-301, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21833102

RESUMEN

Fabrication of an all-optical switchable holographic liquid crystal (LC) Fresnel lens based on azo-dye-doped polymer-dispersed LCs is reported using a Michelson interferometer. It is found that, upon circularly polarized photoirradiation, the diffraction efficiency of the fabricated Fresnel lens was increased significantly in a reversible manner. We believe this is due to the anisotropy induced by reorientation of the LC molecules coupled with azo-dye molecule orientation due to trans-cis-trans photoisomerization, which modulates the refractive index of the LC-rich regions. We also studied the effect of azo dye on the polarization dependency of the fabricated lens.

13.
Appl Opt ; 50(17): 2701-7, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21673775

RESUMEN

A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...