Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 27(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35011296

RESUMEN

Surface enhanced infrared absorption spectroscopic studies (SEIRAS) as a technique to study biological molecules in extremely low concentrations is greatly evolving. In order to use the technique for identification of the structure and interactions of such biological molecules, it is necessary to identify the effects of the plasmonic electric-field enhancement on the spectral signature. In this study the spectral properties of 1,2-Dipalmitoyl-sn-glycero-3 phosphothioethanol (DPPTE) phospholipid immobilized on gold nanoantennas, specifically designed to enhance the vibrational fingerprints of lipid molecules were studied. An AFM study demonstrates an organization of the DPPTE phospholipid in bilayers on the nanoantenna structure. The spectral data were compared to SEIRAS active gold surfaces based on nanoparticles, plain gold and plain substrate (Si) for different temperatures. The shape of the infrared signals, the peak positions and their relative intensities were found to be sensitive to the type of surface and the presence of an enhancement. The strongest shifts in position and intensity were seen for the nanoantennas, and a smaller effect was seen for the DPPTE immobilized on gold nanoparticles. This information is crucial for interpretation of data obtained for biological molecules measured on such structures, for future application in nanodevices for biologically or medically relevant samples.


Asunto(s)
Nanoestructuras/química , Fosfolípidos/química , Espectrofotometría Infrarroja , Resonancia por Plasmón de Superficie , Fenómenos Químicos , Oro , Membrana Dobles de Lípidos/química , Nanopartículas del Metal , Microscopía de Fuerza Atómica , Temperatura
2.
ACS Sens ; 5(7): 2191-2197, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32586089

RESUMEN

Plasmonic nanoantennas are promising sensing platforms for detecting chemical and biological molecules in the infrared region. However, integrating fragile biological molecules such as proteins on plasmonic nanoantennas is an essential requirement in the detection procedure. It is crucial to preserve the structural integrity and functionality of proteins while attaching them. In this study, we attached lactose permease, a large membrane protein, onto plasmonic nanoantennas by means of the nickel-nitrile triacetic acid immobilization technique. We followed the individual steps of the immobilization procedure for different lengths of the nanoantennas. The impact of varying the length of the nanoantennas on the shape of the vibrational signal of the chemical layers and on the protein spectrum was studied. We showed that these large proteins are successfully attached onto the nanoantennas, while the chemical spectra of the immobilization monolayers show a shape deformation which is an effect of the coupling between the vibrational mode and the plasmonic resonance.


Asunto(s)
Proteínas de la Membrana , Vibración , Espectrofotometría Infrarroja
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 230: 118081, 2020 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-32000061

RESUMEN

The combination of surface-enhanced resonance Raman spectroscopy (SERRS) and electrochemistry is an ideal tool to study the redox process of the heme proteins and is often performed on silver electrodes. In this manuscript, we present an approach using a microstructured gold surface that serves as the electrochemical working electrode, and at the same time, acts as SERS active substrate. The cell requires a micromolar concentration of sample at the electrode surface. Even if the performance of the gold grid as SERS substrate exhibited a smaller enhancement factor than expected for silver, oxidized and reduced spectra of proteins (Сyt c, Hb and Mb) monolayers could be obtained and the characteristic redox dependent shifts of the marker bands ν19, ν4 and ν10 were seen. The easy modification protocol and the higher stability of the gold electrode towards oxidative currents are the advantages of the present spectroeletrochemical cell. Finally, FDTD simulations confirm that the roughness of the gold grid has an effect on the Raman enhancement of the adsorbed proteins.


Asunto(s)
Electroquímica/métodos , Electrodos , Oro/química , Hemoproteínas/análisis , Espectrometría Raman/métodos , Animales , Oxidación-Reducción , Propiedades de Superficie
4.
Sensors (Basel) ; 19(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623081

RESUMEN

Along with the development of hydrogen as a sustainable energy carrier, it is imperative to develop very rapid and sensitive hydrogen leaks sensors due to the highly explosive and flammable character of this gas. For this purpose, palladium-based materials are being widely investigated by research teams because of the high affinity between this metal and hydrogen. Furthermore, nanostructured palladium may provide improved sensing performances compared to the use of bulk palladium. This arises from a higher effective surface available for interaction of palladium with the hydrogen gas molecules. Several works taking advantage of palladium nanostructures properties for hydrogen sensing applications have been published. This paper reviews the recent advances reported in the literature in this scope. The electrical and optical detection techniques, most common ones, are investigated and less common techniques such as gasochromic and surface wave acoustic sensors are also addressed. Here, the sensor performances are mostly evaluated by considering their response time and limit of detection.

5.
ACS Nano ; 10(2): 2082-90, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26814600

RESUMEN

Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies.

6.
Opt Express ; 21(1): 382-90, 2013 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-23388931

RESUMEN

We report for the first time on the experimental response of a Surface Plasmon Resonance fiber optic sensor based on wavelength modulation for hydrogen sensing. This approach of measuring the hydrogen concentration makes the sensor insensitive to intensity fluctuations. The intrinsic fiber sensor developed provides remote sensing and enables the possibility of multi-points sensing. The sensor consists of a multilayer of 35 nm Au/180 nm SiO2/Pd deposited on a step- index multimode fiber core. The sensitivity and selectivity of the sensor are optimal at a Pd thickness of 3.75 nm. The sensor is sensitive to a hydrogen concentration ranging between 0.5 and 4% H2 in Ar, with a response time less than 15 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...