Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 26(11): 1031-1051, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34856751

RESUMEN

Background: Parkinson's disease (PD) is associated with progressive neuronal damage and dysfunction. Oxidative stress helps to regulate neurodegenerative and neuronal dysfunction. Natural compounds could attenuate oxidative stress in a variety of neurological disorders. B. juncea is a rich source of antioxidants. The present study aimed to evaluate the therapeutic potential of B. juncea leaves for the treatment of PD by applying behavioral, in vivo and in silico studies. For in vivo studies rats were divided into six groups (n = 6). Group-I served as normal control (vehicle control). Group-II was disease control (haloperidol 1 mg/kg). Group-III was kept as a standard group (L-Dopa 100 mg/kg + carbidopa 25 mg/kg). Groups (IV-VI) were the treatment groups, receiving extract at 200-, 400- and 600 mg/kg doses respectively, for 21 days orally. Results: In vivo study results showed that the extract was found to improve muscles strength, motor coordination, and balance in PD. These behavioral outcomes were consistent with the recovery of endogenous antioxidant defence in biochemical analysis which was further corroborated with histopathological ameliorations. Dopamine levels increased and monoamine oxidase B (MAO-B) levels decreased dose-dependently in the brain during the study. Herein, we performed molecular docking analysis of the proposed extracted phytochemicals has explained that four putative phytochemicals (sinapic acid, rutin, ferulic acid, and caffeic acid) have presented very good results in terms of protein-ligand binding interactions as well as absorption, distribution, metabolism, excretion & toxicity (ADMET) profile estimations. Conclusion: The undertaken study concluded the anti-Parkinson activity of B. juncea and further suggests developments on its isolated compounds in PD therapeutics.


Asunto(s)
Levodopa , Planta de la Mostaza , Animales , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Ratas
2.
Curr Pharm Des ; 27(34): 3591-3601, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33183192

RESUMEN

Neurodegeneration is a multifactorial process involved the different cytotoxic pathways that lead to neuronal cell death. Alzheimer's disease (AD) is a persistent neurodegenerative disorder that normally has a steady onset and gradually worsens. Neuropathology, AD is characterized by the presence of neuroinflammation, mitochondrial dysfunction, increased oxidative stress, decreased antioxidant defense as well as increased acetylcholinesterase activity. Moreover, enhanced expression of amyloid precursor proteins leads to neural apoptosis, which has a vital role in the degeneration of neurons. The inability of commercial therapeutics to treat a single feature of AD pathology leads to the attraction towards organic drugs. Ellagic acid is a dimer of gallic acid; latest studies revealed that ellagic acid can initiate numerous cell signaling transmissions and decrease the progression of neurodegeneration. The neuroprotective effects of ellagic acid to protect the neurons against neurodegenerative events are due to its antioxidant effect, iron chelating, and mitochondrial protective effect. The main goal of this review is to critically analyze the molecular mechanism of action of ellagic acid against AD.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Acetilcolinesterasa/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Ácido Elágico/farmacología , Ácido Elágico/uso terapéutico , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA