Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(4): 3775-3795, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128286

RESUMEN

In the present work, a concise library of 1,3,5-triaryl-2-pyrazolines (2a-2q) was designed and synthesized by employing a multistep strategy, and the newly synthesized compounds were screened for their urease and α-glucosidase inhibitory activities. The compounds (2a-2q) were characterized using a combination of several spectroscopic techniques including FT-IR, 1H NMR, 13C NMR, and EI-MS. All the synthesized compounds, except compound 2i, were potent against urease as compared to the standard inhibitor thiourea (IC50 = 21.37 ± 0.26 µM). These analogs disclosed varying degrees of urease inhibitory activities ranging from 9.13 ± 0.25 to 18.42 ± 0.42 µM. Compounds 2b, 2g, 2m, and 2q having IC50 values of 9.36 ± 0.27, 9.13 ± 0.25, 9.18 ± 0.35, and 9.35 ± 0.35 µM, respectively, showed excellent inhibitory activity as compared to standard thiourea (IC50 = 21.37 ± 0.26 µM). A kinetic study of compound 2g revealed that compound 2g inhibited urease in a competitive mode. Among the synthesized pyrazolines, the compounds 2c, 2k, 2m, and 2o exhibited excellent α-glucosidase inhibitory activity with the lowest IC50 values of 212.52 ± 1.31, 237.26 ± 1.28, 138.35 ± 1.32, and 114.57 ± 1.35 µM, respectively, as compared to the standard acarbose (IC50 = 375.82 ± 1.76 µM). The compounds (2a-2q) showed α-glucosidase IC50 values in the range of 114.57 ± 1.35 to 462.94 ± 1.23 µM. Structure-activity relationship revealed that the size and electron-donating or -withdrawing effects of substituents influenced the activities, which led to the urease and α-glucosidase inhibiting properties. Compound 2m was a dual potent inhibitor against urease and α-glucosidase due to the presence of 2-CF3 electron-withdrawing functionality on the phenyl ring. To the best of our knowledge, these synthetic compounds were found to be the most potent dual inhibitors of urease and α-glucosidase with minimum IC50 values. The cytotoxicity of the compounds (2a-2q) was also investigated against human cell lines MCF-7 and HeLa. Compound 2l showed moderate cytotoxic activity against MCF-7 and HeLa cell lines. Moreover, in silico studies on most active compounds were also performed to understand the binding interaction of most active compounds with active sites of urease and α-glucosidase enzymes. Some compounds exhibited drug-like characteristics due to their lower cytotoxic and good ADME profiles.

2.
J Biomol Struct Dyn ; 40(8): 3777-3788, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33251983

RESUMEN

The COVID-19 pandemic has claimed more than a million lives worldwide within a short time span. Due to the unavailability of specific antiviral drugs or vaccine, the infections are causing panic both in general public and among healthcare providers. Therefore, an urgent discovery and development of effective antiviral drug for the treatment of COVID-19 is highly desired. Targeting the main protease (Mpro) of the causative agent, SARS-CoV-2 has great potential for drug discovery and drug repurposing efforts. Published crystal structures of SARS-CoV-2 Mpro further facilitated in silico investigations for discovering new inhibitors against Mpro. The present study aimed to screen several libraries of synthetic flavonoids and benzisothiazolinones as potential SARS-CoV-2 Mpro inhibitors using in silico methods. The short-listed compounds after virtual screening were filtered through SwissADME modeling tool to remove molecules with unfavorable pharmacokinetics and medicinal properties. The drug-like molecules were further subjected to iterative docking for the identification of top binders of SARS-CoV-2 Mpro. Finally, molecular dynamic (MD) simulations and binding free energy calculations were performed for the evaluation of the dynamic behavior, stability of protein-ligand complex, and binding affinity, resulting in the identification of thioflavonol, TF-9 as a potential inhibitor of Mpro. The computational studies further revealed the binding of TF-9 close to catalytic dyad and interactions with conserved residues in the S1 subsite of the substrate binding site. Our in-silico study demonstrated that synthetic analogs of flavonoids, particularly thioflavonols, have a strong tendency to inhibit the main protease Mpro, and thereby inhibit the reproduction of SARS-CoV-2. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Flavonoides/farmacología , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Péptido Hidrolasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2
3.
Bioorg Med Chem ; 35: 116057, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33610011

RESUMEN

The present study describes the discovery of novel inhibitors of mushroom tyrosinase enzyme. For that purpose, a series of varyingly substituted 2-phenylchromone analogues 1-28 were synthesized and characterized in detail by various spectroscopic techniques (UV-Vis, FTIR, 1H NMR, 13C NMR) and mass spectrometry. All the derivatives (1-28) were screened in vitro for their inhibitory potential against mushroom tyrosinase enzyme. Interestingly, all the synthetic compounds displayed good to excellent inhibitory activity with IC50 values ranging from 0.093 ± 0.003 µg/ml to 23.58 ± 0.94 µg/ml for brominated 3-hydroxy-2-phenylchromones and 0.22 ± 0.017 µg/ml to 22.22 ± 1.1 µg/ml for brominated 2-phenylchromones against tyrosinase in comparison to the standard kojic acid (IC50 = 1.79 ± 0.64 µg/ml). Remarkably, the bromine atoms attached on ring A attribute to increases the inhibitory potential of 2-phenylchromone moiety and anti-tyrosinase assay demonstrated that compound 10 (IC50 = 0.093 ± 0.003 µg/ml) was found almost nineteenfold, 11 (IC50 = 0.126 ± 0.015 µg/ml) fourteenfold and 26 (IC50 = 0.22 ± 0.017 µg/ml) about eightfold more active than the positive control. Notably, among the already literature reported tyrosinase inhibitors, these analogues have been found the most active inhibitors of mushroom tyrosinase with the lowest possible IC50 values. To design and develop novel tyrosinase inhibitors using 2-phenylchromone as a structural motif in the future, a limited structure-activity relationship was established. Moreover, in silico studies were carried out to rationalize the binding mode of interactions of all the targeted compounds (1-28) with the active site of enzymes. The experimental and theoretical results are in parallel with one another. In addition, molecular description was performed with the drug-likeness and bioactivity scores. Computational analysis predicted that few compounds are in a linear correlation with Lipinski's RO5 indicating superb drug-likeness and bioactivity score for drug targets.


Asunto(s)
Cromonas/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Cromonas/síntesis química , Cromonas/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
4.
J Biomol Struct Dyn ; 39(18): 7107-7122, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-32799758

RESUMEN

To explore new scaffolds as tyrosinase enzyme inhibitors remain an interesting goal in the drug discovery and development. In due course and our approach to synthesize bioactive compounds, a series of varyingly substituted 3-hydroxyflavone derivatives (1-23) were synthesized in one-pot reaction and screened for in vitro against mushroom tyrosinase enzyme. The structures of newly synthesized compounds were unambiguously corroborated by usual spectroscopic techniques (FTIR, UV-Vis, 1H-, 13C-NMR) and mass spectrometry (EI-MS). The structure of compound 15 was also characterized by X-ray diffraction analysis. Furthermore, the synthesized compounds (1-23) were evaluated for their antimicrobial potential. Biological studies exhibit pretty good activity against most of the bacterial-fungal strains and their activity is comparable to those of commercially available antibiotics i.e. Cefixime and Clotrimazole. Amongst the series, the compounds 2, 4, 5, 6, 7, 10, 11, 14 and 22 exhibited excellent inhibitory activity against tyrosinase, even better than standard compound. Remarkably, the compound 2 (IC50 = 0.280 ± 0.010 µg/ml) was found almost sixfold and derivative 5 (IC50 = 0.230 ± 0.020 µg/ml) about sevenfold more active as compared to standard Kojic acid (IC50 =1.79 ± 0.6 µg/ml). Moreover, these synthetic compounds (1-23) displayed good to moderate activities against tested bacterial and fungal strains. Their emission behavior was also investigated in order to know their potential as fluorescent probes. The molecular modelling simulations were also performed to explore their binding interactions with active sites of the tyrosinase enzyme. Limited structure-activity relationship was established to design and develop new tyrosinase inhibitors by employing 2-arylchromone as a structural core in the future. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Agaricales , Antiinfecciosos , Flavonoides/química , Monofenol Monooxigenasa/antagonistas & inhibidores , Antiinfecciosos/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Relación Estructura-Actividad
5.
J Biomol Struct Dyn ; 39(16): 6154-6167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32752941

RESUMEN

In this protocol, a series of 3-benzyloxyflavone derivatives have been designed, synthesized, characterized and investigated in vitro as cholinesterase inhibitors. The findings showed that all the synthesized target compounds (1-10) are potent dual inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes with varying IC50 values. In comparison, they are more active against AChE than BChE. Remarkably, amongst the series, the compound 2 was identified as the most active inhibitor of both AChE (IC50 = 0.05 ± 0.01 µM) and BChE (IC50 = 0.09 ± 0.02 µM) relative to the standard Donepezil (IC50 = 0.09 ± 0.01 for AChE and 0.13 ± 0.04 µM for BChE). Moreover, the derivatives 5 (IC50 = 0.07 ± 0.02 µM) and 10 (0.08 ± 0.02 µM) exhibited the highest selective inhibition against AChE as compared to the standard. Preliminary structure-activity relationship was established and thus found that cholinesterase inhibitory activities of these compounds are highly dependent on the nature and position of various substituents on Ring-B of the 3-Benzyloxyflavone scaffolds. In order to find out the nature of binding interactions of the compounds and active sites of the enzymes, molecular docking studies were carried out.[Formula: see text]HIGHLIGHTS3-benzyloxyflavone analogues were designed, synthesized and characterized.The target molecules (1-10) were evaluated for their inhibitory potential against AChE and BChE inhibitory activities.Limited structure-activity relationship was developed based on the different substituent patterns on aryl part.Molecular docking studies were conducted to correlate the in vitro results and to identify possible mode of interactions at the active pocket site of the enzyme.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Butirilcolinesterasa , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
6.
Bioorg Chem ; 91: 103124, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31319297

RESUMEN

To explore new scaffolds for the treat of Alzheimer's disease appears to be an inspiring goal. In this context, a series of varyingly substituted flavonols and 4-thioflavonols have been designed and synthesized efficiently. All the newly synthesized compounds were characterized unambiguously by common spectroscopic techniques (IR, 1H-, 13C NMR) and mass spectrometry (EI-MS). All the derivatives (1-24) were evaluated in vitro for their inhibitory potential against cholinesterase enzymes. The results exhibited that these derivatives were potent selective inhibitors of acetylcholinesterase (AChE), except the compound 11 which was selective inhibitor of butyrylcholinesterase (BChE), with varying degree of IC50 values. Remarkably, the compounds 20 and 23 have been found the most potent almost dual inhibitors of AChE and BChE amongst the series with IC50 values even less than the standard drug. The experimental results in silico were further validated by molecular docking studies in order to find their binding modes with the active pockets of AChE and BChE enzymes.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Flavonoles/química , Acetilcolinesterasa/química , Butirilcolinesterasa/química , Dominio Catalítico , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/metabolismo , Flavonoles/síntesis química , Flavonoles/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 26(12): 3696-3706, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29886083

RESUMEN

The prime objective of this research work is to prepare readily soluble synthetic analogues of naturally occurring 3-O-flavonol glycosides and then investigate the influence of various substituents on biological properties of synthetic compounds. In this context, a series of varyingly substituted 3-O-flavonol glycosides have been designed, synthesized and characterized efficiently. The structures of synthetic molecules were unambiguously corroborated by IR, 1H, 13C NMR and ESI-MS spectroscopic techniques. The structure of compound 22 was also analyzed by X-ray diffraction analysis. All the synthetic compounds (21-30) were evaluated for in vitro inhibitory potential against cholinesterase enzymes. The results displayed that most of the derivatives were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with varying degree of IC50 values. The experimental results were further encouraged by molecular docking studies in order to explore their binding behavior with the active pocket of AChE and BChE enzymes. The experimental and theoretical results are in parallel with one another.


Asunto(s)
Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Glicósidos/química , Acetilcolinesterasa/química , Sitios de Unión , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Cristalografía por Rayos X , Flavonoles/química , Flavonoles/metabolismo , Glicósidos/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA