Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Sci Rep ; 14(1): 8672, 2024 04 15.
Article En | MEDLINE | ID: mdl-38622317

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Hibiscus , Lignin , Lignin/chemistry , Deep Eutectic Solvents , Biomass , Carbohydrates , Solvents/chemistry , Carbon , Hydrolysis
2.
Microbiol Spectr ; : e0121322, 2023 Aug 31.
Article En | MEDLINE | ID: mdl-37650619

The recent emergence of the omicron variant of the SARS-CoV-2 virus with large numbers of mutations has raised concern about a potential new surge in infections. Here we use molecular dynamics to study the biophysics of the interface of the BA1 and BA2 omicron spike protein binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii) the furin binding domain. Our simulations suggest that while there is a significant reduction of antibody (Ab) binding strength corresponding to escape, the omicron spikes pay a cost in terms of weaker receptor binding as measured by interfacial hydrogen bonds (H-bond). The furin cleavage domain (FCD) is the same or weaker binding than the delta variant, suggesting lower fusogenicity resulting in less viral load and disease intensity than the delta variant. IMPORTANCE The BA1 and BA2 and closely related BA2.12.2 and BA.5 omicron variants of SARS-CoV-2 dominate the current global infection landscape. Given the high number of mutations, particularly those which will lead to antibody escape, it is important to establish accurate methods that can guide developing health policy responses that identify at a fundamental level whether omicron and its variants are more threatening than its predecessors, especially delta. The importance of our work is to demonstrate that simple in silico simulations can predict biochemical binding details of the omicron spike protein that have epidemiological consequences, especially for binding to the cells and for fusing the viral membrane with the cells. In each case, we predicted weaker binding of the omicron spike, which agreed with subsequent experimental results. Future virology experiments will be needed to test these predictions further.

3.
Sci Rep ; 13(1): 9319, 2023 06 08.
Article En | MEDLINE | ID: mdl-37291260

Establishing the host range for novel viruses remains a challenge. Here, we address the challenge of identifying non-human animal coronaviruses that may infect humans by creating an artificial neural network model that learns from spike protein sequences of alpha and beta coronaviruses and their binding annotation to their host receptor. The proposed method produces a human-Binding Potential (h-BiP) score that distinguishes, with high accuracy, the binding potential among coronaviruses. Three viruses, previously unknown to bind human receptors, were identified: Bat coronavirus BtCoV/133/2005 and Pipistrellus abramus bat coronavirus HKU5-related (both MERS related viruses), and Rhinolophus affinis coronavirus isolate LYRa3 (a SARS related virus). We further analyze the binding properties of BtCoV/133/2005 and LYRa3 using molecular dynamics. To test whether this model can be used for surveillance of novel coronaviruses, we re-trained the model on a set that excludes SARS-CoV-2 and all viral sequences released after the SARS-CoV-2 was published. The results predict the binding of SARS-CoV-2 with a human receptor, indicating that machine learning methods are an excellent tool for the prediction of host expansion events.


COVID-19 , Chiroptera , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , SARS-CoV-2/genetics , Phylogeny
4.
Foods ; 10(11)2021 Nov 16.
Article En | MEDLINE | ID: mdl-34829093

The function of packaging is crucial in the maintenance of fresh meat product quality. This study aimed to assess the efficiency of six films added with coatings 2379L/220 and 2379L/221 (containing sage extracts) to inhibit Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli, which showed that two of the six films had a significant effect. Additionally, the effects of the films on refrigerated skinless chicken breast meat were evaluated based on microbiological content, colour, weight loss, texture and pH. Four of the six films were examined could extend the storability of refrigerated chicken breast fillets for up to seven days. All six treated films improved the pH, colour stability, weight loss, and texture of the chicken fillets. Therefore, these findings suggested that the coatings containing sage extracts having different viscosities (2379L/220 and 2379L/221) were effective as antimicrobial adhesives in food packaging films and can be commercially applied in prolonging the storage of chicken breast meat without affecting their quality.

5.
Int J Biol Macromol ; 163: 1451-1457, 2020 Nov 15.
Article En | MEDLINE | ID: mdl-32738328

The growing global awareness for environmental protection has inspired the exploration on producing active packaging films from bio-based materials. In present work, three types of active agents were studied by incorporating thymol(T), kesum(K), and curry(C) (10% wt.) into polylactic acid (PLA) to produce PLA-10T, PLA-10K, and PLA10-C packaging films via solvent casting method. The morphology, functional chemistry, thermal stability, permeability, and antimicrobial properties were evaluated for PLA films. Functional chemical analysis confirmed the presence of interfacial bonding between aromatic groups of active agents and PLA carbonyl group. PLA-10K exhibited the highest thermal resistance comparing to PLA-10T and PLA-10C while water vapor barrier was enhanced after incorporation of active agents. Qualitative observation had indicated that chicken meat could be preserved in the active films until 15 days, while odourless and firm texture properties retained in food sample. For disc diffusion assay (in vitro), it showed positive results against Gram-positive bacteria (Staphylococcus aureus) whereas with negative results against Gram-negative bacteria (Escherichia coli) and Aspergillus Brasiliensis due to embedded active agents within PLA matrix. We concluded that produced active agents filled PLA films potential to use in food packaging application to enhance the shelf life of meats, fruits and vegetables product.


Food Packaging/methods , Polyesters/chemistry , Anti-Bacterial Agents/chemistry , Aspergillus/drug effects , Escherichia coli/drug effects , Permeability , Staphylococcus aureus/drug effects , Steam , Thymol/chemistry
6.
Carbohydr Polym ; 241: 116423, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32507177

Olive fiber is a sustainable material as well as alternative biomass for extraction of nanocrystalline cellulose (NCC), which has been widely applied in various industries. In the present study, ONC-I, ONC-II, and ONC-III were extracted from olive stem fiber at different hydrolysis reaction times of 30 min, 45 min, and 60 min, respectively. The nanoparticle size was found gradually reducing from ONC-I (11.35 nm width, 168.28 nm length) to ONC-III (6.92 nm width, 124.16 nm length) due to the disintegration of cellulose fibrils. ONC-II and ONC-III possessed highly pure cellulose compartments and enhanced crystals structure. This study also showed that rigidity increased from ONC-I to ONC-II. ONC-III showed the highest crystallinity of 83.1 %, endowing it as a potentially reliable load-bearing agent. Moreover, ONC-III exhibited highest stable heat resistance among the chemically-isolated nanocellulose. We concluded that olive NCC could be promising materials for a variety of industrial applications in various fields.


Cellulose , Dietary Fiber/analysis , Nanoparticles/chemistry , Olea/chemistry , Cellulose/chemistry , Cellulose/isolation & purification
7.
Carbohydr Polym ; 239: 116248, 2020 Jul 01.
Article En | MEDLINE | ID: mdl-32414444

The aim of the present research work has focused on investigating the effect of cellulose nanofibers (CNFs) and nano clays (montmorillonite (MMT) & organoclay (OMMT)) at 0.75Wt % on the performance of kenaf/epoxy composites. Mechanical (tensile and flexural) and thermal properties of composites in terms of morphology, thermal stability, weight loss, and dynamic mechanical properties were analyzed. The obtained results revealed that the integration of stiff CNFs as filler enhanced the mechanical and thermal properties, storage and loss modulus while a considerable decrease in Tan δ was realized compared to kenaf/epoxy composites. Enhancement in the properties was observed for OMMT and CNFs composites compared to MMT/kenaf/epoxy composites, which is attributed to the uniform filler distribution and interfacial adhesion between CNFs, OMMT, kenaf and epoxy matrix. The obtained results revealed that OMMT and CNFs based kenaf/epoxy composites can be an efficient alternative for construction applications.

8.
Int J Biol Macromol ; 156: 347-353, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32278601

Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 µm) to OL-MCC (156.06 µm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.


Cellulose/chemistry , Dietary Fiber/analysis , Olea/chemistry , Cellulose/isolation & purification , Cellulose/ultrastructure , Chemical Phenomena , Fruit/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry , X-Ray Diffraction
9.
Disabil Rehabil Assist Technol ; 14(5): 513-520, 2019 07.
Article En | MEDLINE | ID: mdl-29933703

This study describes a newly developed prosthetic leg socket design for a below-knee amputation. Excessive heat and the resulted perspiration within a prosthetic socket were the most common causes for reporting a reduced quality of life for prosthetic users. The product namely AirCirc means air circulation and it has been designed by approach of medical device design process in providing the amputees to maintain the skin temperature inside the socket. This device has been designed to provide the amputees with comfort and ultimate breathable. In order to design the device, the small hole was made in prosthetic socket surface since it has a function as air circulation. Four types of proposed sockets namely P1, P2, P3 and P4 and one control socket were compared on a single patient to determine the best design of prosthetic socket. The result successfully reveals that by using holes can be maintain the temperature inside prosthetic socket. In addition to the eco-friendly material, the woven kenaf was used as material that provides good strength as compared to glass fibre and offer sustainable and biodegradable product yet provides unique and aesthetic surface as came from woven kenaf itself. The objective of this paper is to provide the airflow prosthetic socket design and optimize the use of natural fibre in prostheses field. Thus, with the use of the environmental friendly material, functionality device and heat removal capability make the device suitable for maintaining a comfortable and healthy environment for prosthesis. Implications of Rehabilitation Newly developed prosthetic leg socket design for a below-knee amputation Device has been designed to provide the amputees with comfort and ultimate breathable Woven kenaf was used as material that provides good strength as compared to glass fibre for sustainable and biodegradable product Results show that by using holes can be maintain the temperature inside prosthetic socket.


Amputees/rehabilitation , Artificial Limbs , Knee Prosthesis , Prosthesis Design , Skin Temperature , Humans , Quality of Life , Textiles
10.
Int J Biol Macromol ; 121: 1314-1328, 2019 Jan.
Article En | MEDLINE | ID: mdl-30208300

The utilization of nanocellulose has increasingly gained attentions from various research fields, especially the field of polymer nanocomposites owing to the growing environmental hazardous of petroleum based fiber products. Meanwhile, the searching of alternative cellulose sources from different plants has become the interests for producing nanocellulose with varying characterizations that expectedly suit in specific field of applications. In this content the long and strong bast fibers from plant species was gradually getting its remarkable position in the field of nanocellulose extraction and nanocomposites fabrications. This review article intended to present an overview of the chemical structure of cellulose, different types of nanocellulose, bast fibers compositions, structure, polylactic acid (PLA) and the most probable processing techniques on the developments of nanocellulose from different bast fibers especially jute, kenaf, hemp, flax, ramie and roselle and its nanocomposites. This article however more focused on the fabrication of PLA based nanocomposites due to its high firmness, biodegradability and sustainability properties in developed products towards the environment. Along with this it also explored a couple of issues to improve the processing techniques of bast fibers nanocellulose and its reinforcement in the PLA biopolymer as final products.


Cellulose/chemistry , Nanocomposites/chemistry , Nanotechnology/methods , Polyesters/chemistry , Humans
11.
Carbohydr Polym ; 191: 103-111, 2018 Jul 01.
Article En | MEDLINE | ID: mdl-29661297

TEMPO-oxidize nanocellulose (TONC) suspension has been obtained from total chlorine free (TCF) oil palm empty-fruit-bunches (OPEFB) pulp using 4-acetamido-TEMPO (2,2,6,6-tetramethyl piperidin-1-oxyl) mediated oxidation with sodium hypochlorite and sodium bromide in water at 25 °C and pH 10. TONC suspension with varied content from 0.5 to 6% (w/w) reinforced polyvinyl alcohol (PVA) polymer based nanocomposite films were prepared by the casting method. The structural interaction between the TONC and PVA was characterized by the Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the 4% (w/w) TONC content reinforced nanocomposite exhibited the highest tensile strength and modulus with an increase of 122% and 291% respectively, compared to PVA while the elongation at break decreased about 42.7%. Thermal stability of PVA based nanocomposite films was improved after incorporation of TONC. Incorporation of TONC in PVA film increases its crystallinity due to strongly linking between the hydroxyl groups of materials however considerable decreases beyond 2 wt% loading are observed. TONC incorporation beyond 2 wt% also reduces the melting temperature peaks and enthalpy of nanocomposite films. FT-IR spectra, NMR and SEM indicate that there is interaction between the TONC and PVA.

12.
Int J Biol Macromol ; 102: 822-828, 2017 Sep.
Article En | MEDLINE | ID: mdl-28455253

The current study presents about the effect of cellulose nanofibers (CNFs) filler on the thermal and dynamic mechanical analysis (DMA) of epoxy composites as a function of temperature. In this study hand lay-up method was used to fabricate CNF reinforced Epoxy nanocomposites with CNF loading of 0.5%, 0.75%, and 1% into epoxy resin. The obtained thermal and DMA results illustrates that thermal stability, char content, storage modulus (E'), loss modulus (E") and glass transition temperature (Tg) increases for all CNF/epoxy nanocomposites compared to the pure epoxy. Thermal results revealed that 0.75% offers superior resistance or stability towards heat compared to its counterparts. In addition, 0.75% CNF/epoxy nanocomposites confers highest value of storage modulus as compared to 0.5% and 1% filler loading. Hence, it is concluded that 0.75% CNFs loading is the minimal to enhance both thermal and dynamic mechanical properties of the epoxy composites and can be utilized for advance material applications where thermal stability along with renewability are prime requirements.


Cellulose/chemistry , Epoxy Compounds/chemistry , Mechanical Phenomena , Nanofibers/chemistry , Temperature , Transition Temperature
13.
Int J Biol Macromol ; 99: 223-232, 2017 Jun.
Article En | MEDLINE | ID: mdl-28237574

Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.


Cassia/chemistry , Cellulose/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Silver/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cellulose/pharmacology , Nanotechnology , Reducing Agents/chemistry , Temperature , Tensile Strength
14.
Int J Biol Macromol ; 97: 190-200, 2017 Apr.
Article En | MEDLINE | ID: mdl-28082223

Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.


Cellulose/chemistry , Epoxy Resins/chemistry , Mechanical Phenomena , Nanofibers/chemistry , Materials Testing , Stress, Mechanical , Tensile Strength
15.
Int J Biol Macromol ; 95: 1064-1071, 2017 Feb.
Article En | MEDLINE | ID: mdl-27984140

In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.


Cellulose/chemistry , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Plant Extracts/chemistry , Reducing Agents/chemistry , Terminalia/chemistry , Anti-Bacterial Agents , Copper/chemistry , Disk Diffusion Antimicrobial Tests , Escherichia coli/drug effects , Escherichia coli/growth & development , Food Packaging , Green Chemistry Technology , Hot Temperature , Humans , Metal Nanoparticles/ultrastructure , Nanocomposites/ultrastructure , Oxidation-Reduction , Plant Leaves/chemistry , Reducing Agents/isolation & purification , Tensile Strength
16.
Int J Biol Macromol ; 89: 575-81, 2016 Aug.
Article En | MEDLINE | ID: mdl-27177458

The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.


Arecaceae/chemistry , Plant Extracts/chemistry , Plastics/chemistry , Starch/chemistry , Agar/chemistry , Plant Extracts/isolation & purification , Spectroscopy, Fourier Transform Infrared , Starch/isolation & purification , Temperature , Tensile Strength , Water/chemistry
17.
Carbohydr Polym ; 146: 36-45, 2016 08 01.
Article En | MEDLINE | ID: mdl-27112848

The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.


Arecaceae/chemistry , Food Packaging , Polyesters/chemistry , Starch/chemistry , Polymers , Tensile Strength
18.
J Food Sci Technol ; 53(1): 326-36, 2016 Jan.
Article En | MEDLINE | ID: mdl-26787952

In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.

19.
BMJ Case Rep ; 20152015 Oct 29.
Article En | MEDLINE | ID: mdl-26516251

A 32-year-old woman with a painful swelling around the right eye few hours after blowing her nose, presented to the accident and emergency department. There was no associated history of facial trauma. Examination revealed a grossly swollen right eye and palpable subcutaneous emphysema. The patient's visual acuity and eye movements were normal. A CT scan of the orbit confirmed orbital emphysema secondary to a fracture of the floor of the orbit into the maxillary sinus, as a result of increased intranasal pressure during nose blowing. The patient was admitted and managed conservatively with antibiotics. She made a full recovery with complete resolution of all her symptoms. A nasal bone fracture was also seen on CT scan and even though the patient could not recall any history of facial trauma, it was an incidental finding.


Orbital Diseases/etiology , Orbital Fractures/etiology , Pressure/adverse effects , Subcutaneous Emphysema/etiology , Adult , Female , Humans , Nasal Cavity/physiopathology , Orbital Fractures/diagnostic imaging , Radiography
20.
Carbohydr Polym ; 99: 649-65, 2014 Jan.
Article En | MEDLINE | ID: mdl-24274556

Nanofibrillated cellulose from biomass has recently gained attention owing to their biodegradable nature, low density, high mechanical properties, economic value and renewability. Although they still suffer from two major drawbacks. The first challenge is the exploration of raw materials and its application in nanocomposites production. Second one is high energy consumption regarding the mechanical fibrillation. However, pretreatments before mechanical isolation can overcome this problem. Hydrophilic nature of nano-size cellulose fibers restricts good dispersion of these materials in hydrophobic polymers and therefore, leads to lower mechanical properties. Surface modification before or after mechanical defibrillation could be a solution for this problem. Additionally, drying affects the size of nanofibers and its properties which needs to study further. This review focuses on recent developments in pretreatments, nanofibrillated cellulose production and its application in nanopaper applications, coating additives, security papers, food packaging, and surface modifications and also for first time its drying.


Cellulose/chemistry , Food Packaging , Nanocomposites/chemistry , Nanofibers/chemistry , Paper , Acetylation , Desiccation , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Materials Testing , Methylation , Surface Properties , Tensile Strength
...