Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 172
1.
Metabolomics ; 20(3): 58, 2024 May 21.
Article En | MEDLINE | ID: mdl-38773056

INTRODUCTION: Bio stimulants are substances and/or microorganisms that are used to improve plant growth and crop yields by modulating physiological processes and metabolism of plants. While research has primarily focused on the broad effects of bio stimulants in crops, understanding their cellular and molecular influences in plants, using metabolomic analysis, could elucidate their effectiveness and offer possibilities for fine-tuning their application. One such bio stimulant containing galacturonic acid as elicitor is used in agriculture to improve wheat vigor and strengthen resistance to lodging. OBJECTIVE: However, whether a metabolic response is evolved by plants treated with this bio stimulant and the manner in which the latter might regulate plant metabolism have not been studied. METHOD: Therefore, the present study used 1H-NMR and LC-MS to assess changes in primary and secondary metabolites in the roots, stems, and leaves of wheat (Triticum aestivum) treated with the bio stimulant. Orthogonal partial least squares discriminant analysis effectively distinguished between treated and control samples, confirming a metabolic response to treatment in the roots, stems, and leaves of wheat. RESULTS: Fold-change analysis indicated that treatment with the bio stimulation solution appeared to increase the levels of hydroxycinnamic acid amides, lignin, and flavonoid metabolism in different plant parts, potentially promoting root growth, implantation, and developmental cell wall maturation and lignification. CONCLUSION: These results demonstrate how non-targeted metabolomic approaches can be utilized to investigate and monitor the effects of new agroecological solutions based on systemic responses.


Metabolomics , Triticum , Triticum/metabolism , Triticum/drug effects , Metabolomics/methods , Chromatography, Liquid/methods , Mass Spectrometry/methods , Magnetic Resonance Spectroscopy/methods , Plant Leaves/metabolism , Plant Leaves/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Liquid Chromatography-Mass Spectrometry
2.
Environ Sci Pollut Res Int ; 31(20): 29644-29655, 2024 Apr.
Article En | MEDLINE | ID: mdl-38581633

Tillandsia species are plants from the Bromeliaceae family which display biomonitoring capacities in both active and passive modes. The bioaccumulation potential of Tillandsia aeranthos (Loisiel.) Desf. and Tillandsia bergeri Mez acclimated to Southern/Mediterranean Europe has never been studied. More generally, few studies have detailed the maximum accumulation potential of Tillandsia leaves through controlled experiments. The aim of this study is to evaluate the maximum accumulation values of seven metals (Co, Cu, Mn, Ni, Pb, Pt, and Zn) in T. aeranthos and T. bergeri leaves. Plants were immersed in different mono elemental metallic solutions of Co (II), Cu (II), Mn (II), Ni (II), Pb (II), Pt (IV), and Zn (II) ions at different concentrations. In addition, cocktail solutions of these seven metals at different concentrations were prepared to study the main differences and the potential selectivity between metals. After exposure, the content of these metals in the leaves were measured by inductively coupled plasma-optical emission spectrometry. Data sets were evaluated by a fitted regression hyperbola model and principal component analysis, maximum metal loading capacity, and thermodynamic affinity constant were determined. The results showed important differences between the two species, with T. bergeri demonstrating higher capacity and affinity for metals than T. aeranthos. Furthermore, between the seven metals, Pb and Ni showed higher enrichment factors (EF). T. bergeri might be a better bioaccumulator than T. aeranthos with marked selectivity for Pb and Ni, metals of concern in air quality biomonitoring.


Air Pollutants , Environmental Monitoring , Metals , Plant Leaves , Tillandsia , Tillandsia/metabolism , Plant Leaves/metabolism , Air Pollutants/metabolism , Environmental Monitoring/methods , Metals/metabolism , Spectrophotometry, Atomic , Principal Component Analysis , Regression Analysis , Bioaccumulation , Mediterranean Region
3.
Injury ; 55(3): 111368, 2024 Mar.
Article En | MEDLINE | ID: mdl-38309083

BACKGROUND: Non-aortic arterial injuries are common and are associated with high morbidity and mortality. Historically, open surgical repair (OSR) was the conventional method of repair. With recent advancements in minimally invasive techniques, endovascular repair (ER) has gained popularity. We sought to compare outcomes in patients undergoing endovascular and open repairs of traumatic non-aortic penetrating arterial injuries. METHODS: A systematic review and meta-analysis was conducted using MEDLINE (OVID), Web of Science, Cochrane Library, and Scopus Database from January 1st, 1990, to March 20th, 2023. Titles and abstracts were screened, followed by full text review. Articles assessing clinically important outcomes between OSR and ER in penetrating arterial injuries were included. Exclusion criteria included blunt injuries, aortic injuries, pediatric populations, review articles, and non-English articles. Odds ratios (OR) and Cohen's d ratios were used to quantify differences in morbidity and mortality. RESULTS: A total of 3770 articles were identified, of which 8 met inclusion criteria and were included in the review. The articles comprised a total of 8369 patients of whom 90 % were male with a median age of 28 years. 85 % of patients were treated with OSR while 15 % underwent ER. With regards to injury characteristics, those who underwent ER were less likely to present with concurrent venous injuries (OR: 0.41; 95 %CI: 0.18, 0.94; p = 0.03). Regarding hospital outcomes, patients who underwent ER had a lower likelihood of in-hospital or 30-day mortality (OR: 0.72; 95 %CI: 0.55, 0.95; p = 0.02) and compartment syndrome (OR: 0.29, 95 %CI: 0.12, 0.71; p = 0.007). The overall risk of bias was moderate. CONCLUSION: Endovascular repair of non-aortic penetrating arterial injuries is increasingly common, however open repair remains the most common approach. Compared to ER, OSR was associated with higher odds of compartment syndrome and mortality. Further prospective research is warranted to determine the patient populations and injury patterns that most significantly benefit from an endovascular approach. LEVEL OF EVIDENCE: Level III, Systematic Reviews & Meta-Analyses.


Blood Vessel Prosthesis Implantation , Compartment Syndromes , Endovascular Procedures , Vascular System Injuries , Child , Humans , Male , Adult , Female , Endovascular Procedures/methods , Arteries/surgery , Odds Ratio , Probability , Vascular System Injuries/surgery , Vascular System Injuries/etiology , Compartment Syndromes/etiology , Treatment Outcome , Risk Factors , Blood Vessel Prosthesis Implantation/adverse effects
4.
Phytochem Anal ; 35(4): 708-722, 2024 Jun.
Article En | MEDLINE | ID: mdl-38246169

INTRODUCTION: The cacao tree (Theobroma cacao), a perennial crop that serves as a source of cacao beans, can suffer from drastic climate changes such as irregular rainfall and shorter rainy seasons. The search for hybrids which are capable of producing specific metabolites favoring adaptation in new climatic conditions is a challenge in cacao farming. OBJECTIVES: We aimed to (1) analyze the metabolic changes in calli of three cacao genotypes during water deficit induced by incubation with polyethylene glycol and (2) assess their response to water deficit stress with regard to somatic embryo differentiation. METHODS: Metabolic profiling was carried out using 1H-NMR spectroscopy and multivariate data analysis was applied to crude extracts of calli grown in non-stress or water deficit stress conditions. RESULTS: Water deficit stress influences the capacity of calli to produce embryos. The SCA12 genotype exhibited the best conversion capacity under severe conditions and was considered as tolerant to drought, followed by the SCA6 genotype (mid-tolerant) and the MA12 genotype (sensitive). Fifty-four metabolites were identified in the three cacao genotypes and discriminant metabolites were identified. Metabolites involved in water stress tolerance such as fructose, trans-aconitic acid, leucine, and hydroxybenzene derivatives were observed in SCA12, the tolerant genotype. CONCLUSION: These results demonstrate the utility of 1H-NMR metabolomics as an essential tool for the analysis of the drought tolerance characteristics of T. cacao.


Cacao , Droughts , Metabolome , Polyethylene Glycols , Cacao/metabolism , Polyethylene Glycols/pharmacology , Genotype , Metabolomics , Stress, Physiological , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/methods
5.
Plants (Basel) ; 12(10)2023 May 12.
Article En | MEDLINE | ID: mdl-37653880

Fusarium oxysporum is the one of the most common and impactful pathogens of flax. Cultivars of flax that show resistance to this pathogen have previously been identified. To better understand the mechanisms that are responsible for this resistance, we conducted time-lapse analysis of one susceptible and one resistant cultivar over a two-week period following infection. We also monitored changes in some metabolites. The susceptible cultivar showed a strong onset of symptoms from 6 to 8 days after inoculation, which at this time point, was associated with changes in metabolites in both cultivars. The resistant cultivar maintained its height and normal photosynthetic capacity but showed a reduced growth of its secondary stems. This resistance was correlated with the containment of the pathogen at the root level, and an increase in some metabolites related to the phenylpropanoid pathway.

6.
Phys Chem Chem Phys ; 25(35): 23923-23928, 2023 Sep 13.
Article En | MEDLINE | ID: mdl-37642502

The magnesium channel controls Mg2+ concentration in the cell and plays an indispensable role in biological functions. The crystal structure of the Magnesium Transport E channel suggested that Mg2+ hydrated by 6 water molecules is transported through a selection filter consisting of COO- groups on two Asp residues. This Mg2+ motion implies successive pairing with -OOC-R and dissociation mediated by water molecules. For another divalent ion, however, it is known that RCOO-⋯Ca2+ cannot be separated even with 12 water molecules. From this discrepancy, we probe the structure of Mg2+(CH3COO-)(H2O)4-17 clusters by measuring the infrared spectra and monitoring the vibrational frequencies of COO- with the help of quantum chemistry calculations. The hydration by (H2O)6 is not enough to induce ion separation, and partially-separated or separated pairs are formed from 10 water molecules at least. These results suggest that the ion separation between Mg2+ and carboxylate ions in the selection-filter of the MgtE channel not only results from water molecules in their first hydration shell, but also from additional factors including water molecules and protein groups in the second solvation shell of Mg2+.

7.
Molecules ; 28(13)2023 Jun 28.
Article En | MEDLINE | ID: mdl-37446709

Hydrogen bonds (H-bonds) are ubiquitous in peptides and proteins and are central to the stabilization of their structures. Inter-residue H-bonds between non-adjacent backbone amide NH and C=O motifs lead to the well-known secondary structures of helices, turns and sheets, but it is recognized that other H-bonding modes may be significant, including the weak intra-residue H-bond (called a C5 H-bond) that implicates the NH and C=O motifs of the same amino acid residue. Peptide model compounds that adopt stable C5 H-bonds are not readily available and the so-called 2.05-helix, formed by successive C5 H-bonds, is an elusive secondary structure. Using a combination of theoretical chemistry and spectroscopic studies in both the gas phase and solution phase, we have demonstrated that derivatives of 3-amino-1-methylazetidine-3-carboxylic acid, Aatc(Me) can form sidechain-backbone N-H···N C6γ H-bonds that accompany-and thereby stabilize-C5 H-bonds. In the capped trimer of Aatc(Me), extended C5/C6γ motifs are sufficiently robust to challenge classical 310-helix formation in solution and the fully-extended 2.05-helix conformer has been characterized in the gas phase. Concurrent H-bonding support for successive C5 motifs is a new axiom for stabilizing the extended backbone secondary structure in short peptides.


Amino Acids , Azetidines , Amino Acids/chemistry , Proteins/chemistry , Peptides/chemistry , Protein Structure, Secondary , Hydrogen Bonding
8.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Article En | MEDLINE | ID: mdl-37202370

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Arabidopsis , Polygalacturonase , Polygalacturonase/genetics , Polygalacturonase/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Proteins/metabolism , Cell Wall/metabolism
9.
J Food Sci ; 88(5): 2168-2177, 2023 May.
Article En | MEDLINE | ID: mdl-36988107

The classic Coffee Brewing Control Chart (BCC) was originally developed in the 1950s. It relates coffee quality to brew strength and extraction yield, and it is still widely used today by coffee industry professionals around the world to provide guidance on the brewing of coffee. Despite its popularity, recent experimental studies have revealed that sensory attributes and consumer preferences actually follow much more complicated trends than those indicated by the classic BCC. Here, we present a methodology to synthesize the results of these recent studies on drip-brewed coffee to generate new versions of the BCC: a new Sensory BCC that displays a broad array of statistically significant sensory attributes across typical total dissolved solids and percent extraction ranges, a new Consumer BCC that highlights the existence of two preference clusters with different likes and dislikes across those ranges, a new Sensory and Consumer BCC that combines both sensory descriptive and consumer preferences on the same chart, and a more streamlined BCC that omits consumer preferences and focuses on the overarching sensory descriptive trends. The new BCCs provide more accurate insight on how best to brew coffee to achieve desired sensory profiles. PRACTICAL APPLICATION: Through the manipulation of yield and extraction parameters, the new Sensory and Consumer Coffee Brewing Control Chart presented here can be used by brewers of drip coffee to design coffees with specific sensory profiles and match the preferences of different consumer types.


Coffea , Coffee , Consumer Behavior , Emotions , Epichlorohydrin
10.
Metabolites ; 13(2)2023 Feb 14.
Article En | MEDLINE | ID: mdl-36837894

Pistacia lentiscus L. is a medicinal plant that grows spontaneously throughout the Mediterranean basin and is traditionally used to treat diseases, including diabetes. The aim of this work consists of the evaluation of the α-glucosidase inhibitory effect (i.e., antidiabetic activity in vitro) of different extracts from the leaves, stem barks and fruits of P. lentiscus harvested on mountains and the littoral of Tizi-Ouzou in Algeria. Metabolomic profiling combined with a chemometric approach highlighted the variation of the antidiabetic properties of P. lentiscus according to the plant's part and origin. A multiblock OPLS analysis showed that the metabolites most involved in α-glucosidase inhibition activity were mainly found in the stem bark extracts. The highest inhibitory activity was found for the stem bark extracts, with averaged inhibition percentage values of 84.7% and 69.9% for the harvested samples from the littoral and mountain, respectively. On the other hand, the fruit extracts showed a lower effect (13.6%) at both locations. The UHPLC-ESI-HRMS characterization of the metabolites most likely responsible for the α-glucosidase-inhibitory activity allowed the identification of six compounds: epigallocatechin(4a>8)epigallocatechin (two isomers), (epi)gallocatechin-3'-O-galloyl-(epi)gallocatechin (two isomers), 3,5-O-digalloylquinic acid and dihydroxy benzoic acid pentoside.

11.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36639075

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Molecular Dynamics Simulation , Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Glycosides , Pectins/chemistry , Substrate Specificity
12.
Crit Rev Food Sci Nutr ; 63(8): 1010-1036, 2023.
Article En | MEDLINE | ID: mdl-34553656

Coffee contains a variety of organic acids (OAs) and chlorogenic acids (CGAs) that contribute to overall sensory properties. Large variations in preparation and measurement methodology across the literature complicate interpretation of general trends. Here, we perform a systematic review and meta-analysis of the published literature to elucidate the concentrations of OAs and CGAs in both Coffea arabica (arabica) and Coffea canephora (robusta), for both green coffee and roasted coffee at multiple roast levels. A total of 129 publications were found to report acid concentration measurements, yielding 8,634 distinct data points. Analysis of the full data set reveals several trends. First, roasted robusta has considerably more acidic compounds than arabica with 2 to 5 times as much total OAs, and much larger amounts of formic and acetic acid. As for CGAs, in both arabica and robusta 5-CQA is the major component, and progressive roasting decreases the concentration of all CGAs. The total amount of CGA present was more dependent on roast level than the type of coffee (arabica vs. robusta). Overall, this meta-analysis suggests that the increases in certain OAs with roast level might play more of a role in the sensory profile of dark roast coffees than previously suspected.


Coffea , Coffee , Coffee/chemistry , Coffea/chemistry , Nucleotidyltransferases/analysis , Seeds/chemistry
13.
J Sci Food Agric ; 103(8): 4095-4106, 2023 Jun.
Article En | MEDLINE | ID: mdl-36524730

BACKGROUND: Coffee quality is believed to degrade quickly after brewing, and retail establishments discard unsold brewed coffee after a specified holding time period, sometimes as short as 30 min. We used trained sensory panels to evaluate the flavor profiles of light, medium, and dark roast coffees held in three different carafe types (glass on hot plate, thermal jacket, and vacuum insulated) for times ranging from 15 min to 3 h. Furthermore, a panel of 93 coffee-industry professionals performed a blind evaluation of fresh (30 min) versus held (180 min) coffee for overall liking and attribute level adequacy. RESULTS: Sourness increased over time, consistent with acidity increasing over time (i.e., higher titratable acidity, lower pH), but only for the light and medium roasts. Dark roasted coffee became significantly more acidic over 3 h post-brew but was not perceived as more sour over time by the sensory panel. Variations were observed between the thermal jacket and vacuum carafes for the light and dark roast, but few differences were observed with storage type in the medium roast. Surprisingly, the panel of coffee industry professionals showed no preference for fresh over held. CONCLUSIONS: More sensory attributes decreased than increased over time, suggesting that the primary concern with loss of quality during coffee holding may be the loss of volatile aroma compounds. Hedonic ratings suggest that even if the changes over time are noticeable, they may not negatively impact overall liking. © 2022 Society of Chemical Industry.


Coffea , Coffee , Coffee/chemistry , Odorants/analysis , Acids , Coffea/chemistry
14.
Phytochemistry ; 205: 113508, 2023 Jan.
Article En | MEDLINE | ID: mdl-36370882

The hop plant (Humulus lupulus L.) has been exploited for a long time for both its brewing and medicinal uses, due in particular to its specific chemical composition. These last years, hop cultivation that was in decline has been experiencing a renewal for several reasons, such as a craze for strongly hopped aromatic beers. In this context, the present work aims at investigating the genetic and chemical diversity of fifty wild hops collected from different locations in Northern France. These wild hops were compared to ten commercial varieties and three heirloom varieties cultivated in the same sampled geographical area. Genetic analysis relying on genome fingerprinting using 11 microsatellite markers showed a high level of diversity. A total of 56 alleles were determined with an average of 10.9 alleles per locus and assessed a significant population structure (mean pairwise FST = 0.29). Phytochemical characterization of hops was based on volatile compound analysis by HS-SPME GC-MS, quantification of the main prenylated phenolic compounds by UHPLC-UV as well as untargeted metabolomics by UHPLC-HRMS and revealed a high level of chemical diversity among the assessed wild accessions. In particular, analysis of volatile compounds revealed the presence of some minor but original compounds, such as aromadendrene, allo-aromadendrene, isoledene, ß-guaiene, α-ylangene and ß-pinene in some wild accessions; while analysis of phenolic compounds showed high content of ß-acids in these wild accessions, up to 2.37% of colupulone. Genetic diversity of wild hops previously observed was hence supported by their chemical diversity. Sample soil analysis was also performed to get a pedological classification of these different collection sites. Results of the multivariate statistical analysis suggest that wild hops constitute a huge pool of chemical and genetic diversity of this species.


Humulus , Humulus/genetics , Multivariate Analysis , Genetic Variation
15.
Fundam Clin Pharmacol ; 37(2): 347-358, 2023 Apr.
Article En | MEDLINE | ID: mdl-36191347

Local anesthetics have anti-inflammatory effects. Because most previous experiments were performed with supra-therapeutic concentrations, we measured the effects of clinically relevant concentrations of bupivacaine on the Toll like receptor 4 (TLR4)- and TLR2-myeloid differentiation primary response 88 (MyD88)-nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) pathways. We measured tumor necrosis factor alpha (TNF-α) and prostaglandin E2 (PGE2) release, p38 mitogen-activated protein kinase (MAP-kinase) phosphorylation and translocation of NF-κB in human peripheral blood mononuclear cells (hPBMCs) and human monocytes challenged with lipopolysaccharide (LPS) or tripalmitoylated lipopeptide Pam3CysSerLys4 (Pam3CSK4) in the presence or absence of bupivacaine. Similarly, we measured the effect of bupivacaine on HEK293 cells expressing the hTLR4 and the hTLR2 genes and challenged with LPS or Pam3CSK4. Finally, molecular docking simulations of R(+)- and S(-)-bupivacaine binding to the TLR4-myeloid differentiation protein 2 (MD-2) complex and to the TLR2/TLR1 heterodimer were performed. In PBMCs, bupivacaine from 0.1 to 100 µM inhibited LPS-induced TNF-α and PGE2 secretion, phosphorylation of p38 and nuclear translocation of NF-κB in monocytes. Bupivacaine similarly inhibited the effects of Pam3CSK4 on TNF-α secretion. Bupivacaine inhibited the effect of LPS on HEK293 cells expressing the human TLR4 receptor and the effect of Pam3CSK4 on HEK293 cells expressing the human TLR2 receptor. Molecular docking showed that bupivacaine binds to the MD-2 co-receptor of TLR4 and to the TLR2 receptor. Contrary to numerous experiments performed with supratherapeutic doses, our results were obtained with concentrations of bupivacaine as low as 0.1 µM. We conclude that bupivacaine modulates the inflammatory reactions such as those observed after surgery or trauma, at least partly by inhibiting the TLR4- and TLR2-NF-κB pathways.


NF-kappa B , Toll-Like Receptor 4 , Humans , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/pharmacology , Signal Transduction , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Dinoprostone , Molecular Docking Simulation , Bupivacaine/pharmacology , HEK293 Cells
16.
J Clin Med ; 11(21)2022 Oct 28.
Article En | MEDLINE | ID: mdl-36362612

Introduction: Pain after cervicofacial cancer surgery with free flap reconstruction is both underestimated and undertreated. There is a rational for regional anesthesia at the flap harvest site, but few studies describe it. We assessed the influence of common peroneal nerve infiltration on pain and opioid consumption in patients having oropharyngeal cancer surgery with fibular free flap mandibular reconstruction. Methods: After institutional review board (IRB) approval and written informed consent, fifty-six patients were randomly allocated to perineural catheter with ropivacaine infiltration (ROPI) or systemic analgesia (CONTROL). In the ROPI group, an epidural catheter was placed by the surgeon before closure, and ropivacaine 0.2% 15 mL, followed by 4 mL/h during 48 h, was administered. The primary outcomes were pain scores and morphine consumption during the 48 h postoperative period. We also measured ropivacaine concentration at the end of infusion. Finally, we retrospectively assessed long-term pain up to 10 years using electronic medical charts. Results: Perineural infiltration of ropivacaine significantly reduced pain scores at the harvest site only at day 1, and did not influence overall postoperative opioid consumption. Ropivacaine assay showed a potentially toxic concentration in 50% of patients. Chronic pain was detected at the harvest site in only one patient (ROPI group), and was located in the cervical area in the case of disease progression. Discussion: Although the catheter was visually positioned by the surgeon, continuous ropivacaine infiltration of the common peroneal nerve did not significantly reduce postoperative pain, but induced a blood concentration close to the toxic threshold at day 2. Further studies considering other infiltration locations or other dosing schemes should be tested in this context, both to improve efficacy and reduce potential toxicity.

17.
Sci Rep ; 12(1): 20621, 2022 11 30.
Article En | MEDLINE | ID: mdl-36450773

We recently performed a systematic investigation of consumer preferences for black coffee versus key brewing parameters, including total dissolved solids, extraction yield, and brewing temperature (Cotter et al. in J Food Sci 86(1):194-205, 2021. https://doi.org/10.1111/1750-3841.15561 ). An experimental goal in that work was for participants to taste the coffee at a beverage temperature of 65 °C, but the large sample size of more than 3000 individual tastings, combined with natural variations in the brewing and cooling processes, meant that coffees were assessed over a normally distributed range of temperatures between 56 and 71 °C. Here we use those data to provide a more detailed analysis of the impact of beverage temperature on consumer acceptance of the coffee, with a key objective of identifying beverage temperatures at which no consumers assess the coffee either as too hot or too cold. Using a 5-point just-about-right (JAR) scale, we find that a majority of consumers (> 50%) assessed the temperature as JAR at all temperatures tested up to 70 °C. A substantial fraction of consumers, approximately 6-12%, assessed the coffee as too cold over the range 56-68 °C. Only above 70 °C did a majority of consumers assess the coffee as too hot and none assessed it as too cold, albeit with 40% still assessing it as JAR. Complementary analyses indicate that beverage temperature over this range had little impact on assessments of the adequacy of flavor intensity, acidity, and mouthfeel, but did correlate slightly with overall liking and purchase intent. Overall, the results suggest that temperatures over the range of 58-66 °C maximize consumer acceptance, and that 68-70 °C is the minimum temperature range at which no consumers will assess black coffee as too cold.


Coffee , Consumer Behavior , Humans , Temperature , Beverages , Cold Temperature
18.
ACS Omega ; 7(40): 35851-35862, 2022 Oct 11.
Article En | MEDLINE | ID: mdl-36249367

Plants are an everlasting inspiration source of biologically active compounds. Among these medicinal plants, the biological activity of extracts from some species of the Tillandsia genus has been studied, but the phytochemistry of the hardy species Tillandsia bergeri remains unknown. The aim of the present study was to perform the first phytochemical study of T. bergeri and to identify the compounds responsible for the antibacterial activity of T. bergeri extracts. Soxhlet extraction of predried and grinded leaves was first performed using four increasing polarity solvents. A bio-guided fractionation was performed using agar overlay bioautography as a screening method against 12 Gram-positive, Gram-negative, sensitive, and resistant bacterial strains. The results showed the inhibition of Gram-positive methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA), methicillin-resistant S. aureus N-SARM-1 (MRSA), and Staphylococcus caprae ATCC 35538 by the dichloromethane fraction. A phytochemical investigation led to the isolation and identification by high-resolution mass spectrometry and nuclear magnetic resonance of the two flavones penduletin and viscosine, responsible for this antibacterial activity. For viscosine, the minimum inhibitory concentration (MIC) value is equal to 128 µg/mL against MSSA and is equal to 256 µg/mL against MRSA and S. caprae. The combination of these compounds with vancomycin and cloxacillin showed a decrease in MICs of the antibiotics. Penduletin showed synergistic activity when combined with vancomycin against MSSA (FICI < 0.258) and S. caprae (FICI < 0.5). Thus, unexplored Tillandsia species may represent a valuable source for potential antibiotics and adjuvants.

19.
Foods ; 11(16)2022 Aug 13.
Article En | MEDLINE | ID: mdl-36010440

Cold brew coffee is often described as sweeter or less acidic than hot brew coffee. Such comparisons, however, are potentially confounded by two key effects: different brew temperatures necessarily change the extraction dynamics and potentially alter the resulting brew strength, and different consumption temperatures are well known to affect perceived flavor and taste. Here, we performed a systematic study of how extraction temperature affects the sensory qualities of full immersion coffee. The investigation used a 3 × 3 × 3 factorial design, with coffee from three different origins representing different post-harvest methods (washed, honey-processed, and wet-hulled), each roasted to three different levels (light, medium, and dark), and each brewed at three different temperatures (4 °C, 22 °C, and 92 °C). All coffees were brewed to equilibrium, then diluted to precisely 2% total dissolved solids (TDS) and served at the same cold temperature (4 °C). We find that four attributes exhibited statistically significant variations with brew temperature for all origins and roast levels tested, with bitter taste, sour taste, and rubber flavor all higher in hot brewed coffees, and floral flavor higher in cold brewed coffee. However, there were strong interactions with origin and roast, with several additional attributes significantly impacted by temperature for specific origins and roast levels. These results provide insight on how brew temperature can be used to modulate the flavor profile of full immersion coffee.

20.
Metabolites ; 12(7)2022 Jul 08.
Article En | MEDLINE | ID: mdl-35888753

VOCs emitted by flowers play an important role in plant ecology. In the past few years, the Tillandsia genus has been scarcely studied according to the VOCs emitted by flowers. Hence, we decided to enlarge the VOCs composition study already undergone in our laboratory on fragrant 3 Tillandsia species to 12 unscented and 2 faint-scented Tillandsia species and hybrids. The headspace solid phase microextraction (HS-SPME) coupled with gas chromatography combined with the mass spectrometry (GC-MS) method was used to explore the chemical diversity of the VOCs. This study allowed the identification of 65 VOCs among the 14 species and between 6 to 25 compounds were identified in each of the species. The aromatic profile of 10 of the species and hybrids are similar to each other's and show 8 predominant compounds: benzaldehyde, benzacetaldehyde, hexanol, hexanal, heptanal, octanal, nonanal, and furan-2-pentyl. Some specific compounds are present only in some unique species such as trans-calamenene, α-muurolene, and α-guaiene trans-ß-bergamotene. The two faint-scented species studied present an original aromatic profile with a high number of monoterpenes or phenylpropanoids/benzenoids. Our studies allow a better understanding of the ecological role and function of these VOCs in the interactions between these plants with their environment.

...