Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(10)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894228

RESUMEN

Land use practices and climate change have driven substantial soil degradation across global drylands, impacting ecosystem functions and human livelihoods. Biological soil crusts, a common feature of dryland ecosystems, are under extensive exploration for their potential to restore the stability and fertility of degraded soils through the development of inoculants. However, stressful abiotic conditions often result in the failure of inoculation-based restoration in the field and may hinder the long-term success of biocrust restoration efforts. Taking an assisted migration approach, we cultivated biocrust inocula sourced from multiple hot-adapted sites (Mojave and Sonoran Deserts) in an outdoor facility at a cool desert site (Colorado Plateau). In addition to cultivating inoculum from each site, we created an inoculum mixture of biocrust from the Mojave Desert, Sonoran Desert, and Colorado Plateau. We then applied two habitat amelioration treatments to the cultivation site (growth substrate and shading) to enhance soil stability and water availability and reduce UV stress. Using marker gene sequencing, we found that the cultivated mixed inoculum comprised both local- and hot-adapted cyanobacteria at the end of cultivation but had similar cyanobacterial richness as each unmixed inoculum. All cultivated inocula had more cyanobacterial 16S rRNA gene copies and higher cyanobacterial richness when cultivated with a growth substrate and shade. Our work shows that it is possible to field cultivate biocrust inocula sourced from different deserts, but that community composition shifts toward that of the cultivation site unless habitat amelioration is employed. Future assessments of the function of a mixed inoculum in restoration and its resilience in the face of abiotic stressors are needed to determine the relative benefit of assisted migration compared to the challenges and risks of this approach.

2.
Front Microbiol ; 14: 1176760, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601344

RESUMEN

Up to 35% of global drylands have experienced degradation due to anthropogenic impacts, including physical disturbances like trampling and soil removal. These physical disturbances can result in the loss of soil communities known as biological soil crusts (biocrusts) and the important functions they provide, such as soil stability and fertility. The reestablishment of biocrust organisms after disturbance is determined by many factors, including propagule availability, climate, and vascular plant community structure. The role of these factors in natural recovery may be intensified by the extent (or size) of a disturbance. For example, large disturbances can result in reduced propagule availability or enhanced erosion, which impact both the dispersal and establishment of biocrust organisms on disturbed soils, leading to a slower natural recovery. To test how disturbance extent impacts biocrust's natural recovery, we installed four disturbance extents by completely removing biocrust from the mineral soil in plots ranging from 0.01 m2 to 1 m2 and measured productivity and erosion resistance. We found that small disturbance extents did not differ in chlorophyll a content, total exopolysaccharide content, or soil stability after 1.5 years of natural recovery. However, the concentration of glycocalyx exopolysaccharide was higher in the smallest disturbances after the recovery period. Our results indicate that disturbances <1 m2 in scale recover at similar rates, with soil stability returning to high levels in just a few years after severe disturbance. Our findings align with prior work on biocrust natural recovery in drylands and highlight the opportunity for future work to address (1) cyanobacteria, moss, and lichen propagule dispersal; (2) rates and mechanisms of biocrust succession; and (3) the role of wind or water in determining biocrust colonization patterns as compared to lateral growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...