Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EJHaem ; 4(2): 446-449, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37206269

RESUMEN

Half of the myelodysplastic syndromes (MDS) have normal karyotype by conventional banding analysis. The percentage of true normal karyotype cases can be reduced by 20-30% with the complementary application of genomic microarrays. We here present a multicenter collaborative study of 163 MDS cases with a normal karyotype (≥10 metaphases) at diagnosis. All cases were analyzed with the ThermoFisher® microarray (either SNP 6.0 or CytoScan HD) for the identification of both copy number alteration(CNA) and regions of homozygosity (ROH). Our series supports that 25 Mb cut-off as having the most prognostic impact, even after adjustment by IPSS-R. This study highlights the importance of microarrays in MDS patients, to detect CNAs and especially to detect acquired ROH which has demonstrated a high prognostic impact.

3.
Nat Commun ; 12(1): 6233, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716350

RESUMEN

Acute myeloid leukemia (AML) is a hematological malignancy with an undefined heritable risk. Here we perform a meta-analysis of three genome-wide association studies, with replication in a fourth study, incorporating a total of 4018 AML cases and 10488 controls. We identify a genome-wide significant risk locus for AML at 11q13.2 (rs4930561; P = 2.15 × 10-8; KMT5B). We also identify a genome-wide significant risk locus for the cytogenetically normal AML sub-group (N = 1287) at 6p21.32 (rs3916765; P = 1.51 × 10-10; HLA). Our results inform on AML etiology and identify putative functional genes operating in histone methylation (KMT5B) and immune function (HLA).


Asunto(s)
Antígenos HLA/genética , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleótido Simple , Aldehído Reductasa/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Leucemia Mieloide Aguda/mortalidad , Persona de Mediana Edad , Reproducibilidad de los Resultados , Población Blanca/genética
4.
Cancer Genet ; 228-229: 197-217, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30377088

RESUMEN

Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow).


Asunto(s)
Variaciones en el Número de Copia de ADN , Pérdida de Heterocigocidad , Síndromes Mielodisplásicos/genética , Trastornos Mieloproliferativos/genética , Humanos
5.
Cancer Genet ; 228-229: 218-235, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30344013

RESUMEN

Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML.


Asunto(s)
Variaciones en el Número de Copia de ADN , Medicina Basada en la Evidencia , Leucemia Mieloide Aguda/genética , Pérdida de Heterocigocidad , Humanos
6.
Blood Adv ; 1(3): 193-204, 2016 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-29296935

RESUMEN

Disease relapse is the major cause of treatment failure after allogeneic stem cell transplantation (allo-SCT) in acute myeloid leukemia (AML). To identify AML-associated genes prognostic of AML relapse post-allo-SCT, we resequenced 35 genes in 113 adults at diagnosis, 49 of whom relapsed. Two hundred sixty-two mutations were detected in 102/113 (90%) patients. An increased risk of relapse was observed in patients with mutations in WT1 (P = .018), DNMT3A (P = .045), FLT3 ITD (P = .071), and TP53 (P = .06), whereas mutations in IDH1 were associated with a reduced risk of disease relapse (P = .018). In 29 patients, we additionally compared mutational profiles in bone marrow at diagnosis and relapse to study changes in clonal structure at relapse. In 13/29 patients, mutational profiles altered at relapse. In 9 patients, mutations present at relapse were not detected at diagnosis. In 15 patients, additional available pre-allo-SCT samples demonstrated that mutations identified posttransplant but not at diagnosis were detectable immediately prior to transplant in 2 of 15 patients. Taken together, these observations, if confirmed in larger studies, have the potential to inform the design of novel strategies to reduce posttransplant relapse highlighting the potential importance of post-allo-SCT interventions with a broad antitumor specificity in contrast to targeted therapies based on mutational profile at diagnosis.

7.
Haematologica ; 99(8): 1334-42, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816234

RESUMEN

Primary established genetic abnormalities in B-cell precursor acute lymphoblastic leukemia include high hyperdiploidy (51-65 chromosomes), the translocations t(12;21)(p13;q22)/ETV6-RUNX1 fusion and t(9;22)(q34;q11)/BCR-ABL1 fusion, MLL rearrangements and intrachromosomal amplification of chromosome 21. These rearrangements are of prognostic and therapeutic relevance and are usually mutually exclusive. We identified 28 patients at diagnosis with both a primary genetic rearrangement and an immunoglobulin heavy chain locus translocation using chromosomal analysis and fluorescence in situ hybridization. Among these patients, the immunoglobulin heavy chain locus translocation partner gene was identified in six (CRLF2, CEBPA, CEBPB, TRA/D@, IGF2BP1 and IGK@). Clonal architecture was investigated in 17 patients using multiple color interphase fluorescence in situ hybridization analysis, which showed that the translocation was acquired as a secondary abnormality in ten patients, in four patients the etiology was undetermined and in three patients it was observed in a separate clone from the primary chromosomal rearrangement. These findings demonstrate the co-existence of immunoglobulin heavy chain locus translocations with other primary chromosomal rearrangements either in the same or separate clones, which may have prognostic significance in B-cell precursor acute lymphoblastic leukemia. Clinical trials: UKALLXII: Study ID n. ISRCTN77346223 and ALL2003: Study ID n. ISRCTN07355119.


Asunto(s)
Reordenamiento Génico de Linfocito B/fisiología , Cadenas Pesadas de Inmunoglobulina/biosíntesis , Cadenas Pesadas de Inmunoglobulina/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Genes Chromosomes Cancer ; 52(11): 1053-64, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999921

RESUMEN

The cytogenetically cryptic t(5;11)(q35;p15) leading to the NUP98-NSD1 fusion is a rare but recurrent gene rearrangement recently reported to identify a group of young AML patients with poor prognosis. We used reverse transcription polymerase chain reaction (PCR) to screen retrospectively diagnostic samples from 54 unselected pediatric AML patients and designed a real time quantitative PCR assay to track individual patient response to treatment. Four positive cases (7%) were identified; three arising de novo and one therapy related AML. All had intermediate risk cytogenetic markers and a concurrent FLT3-ITD but lacked NPM1 and CEBPA mutations. The patients had a poor response to therapy and all proceeded to hematopoietic stem cell transplant. These data lend support to the adoption of screening for NUP98-NSD1 in pediatric AML without otherwise favorable genetic markers. The role of quantitative PCR is also highlighted as a potential tool for managing NUP98-NSD1 positive patients post-treatment.


Asunto(s)
Fusión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Leucemia Mieloide Aguda/genética , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas Nucleares/genética , Tirosina Quinasa 3 Similar a fms/genética , Adolescente , Asociación , Proteínas Potenciadoras de Unión a CCAAT/genética , Niño , Preescolar , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Humanos , Lactante , Recién Nacido , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Nucleofosmina , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...