Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Remote Sens Appl ; 26: 100757, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36281297

RESUMEN

The stringent COVID-19 lockdown measures in 2020 significantly impacted people's mobility and air quality worldwide. This study presents an assessment of the impacts of the lockdown and the subsequent reopening on air quality and people's mobility in the United Arab Emirates (UAE). Google's community mobility reports and UAE's government lockdown measures were used to assess the changes in the mobility patterns. Time-series and statistical analyses of various air pollutants levels (NO2, O3, SO2, PM10, and aerosol optical depth-AOD) obtained from satellite images and ground monitoring stations were used to assess air quality. The levels of pollutants during the initial lockdown (March to June 2020) and the subsequent gradual reopening in 2020 and 2021 were compared with their average levels during 2015-2019. During the lockdown, people's mobility in the workplace, parks, shops and pharmacies, transit stations, and retail and recreation sectors decreased by about 34%-79%. However, the mobility in the residential sector increased by up to 29%. The satellite-based data indicated significant reductions in NO2 (up to 22%), SO2 (up to 17%), and AOD (up to 40%) with small changes in O3 (up to 5%) during the lockdown. Similarly, data from the ground monitoring stations showed significant reductions in NO2 (49% - 57%) and PM10 (19% - 64%); however, the SO2 and O3 levels showed inconsistent trends. The ground and satellite-based air quality levels were positively correlated for NO2, PM10, and AOD. The data also demonstrated significant correlations between the mobility and NO2 and AOD levels during the lockdown and recovery periods. The study documents the impacts of the lockdown on people's mobility and air quality and provides useful data and analyses for researchers, planners, and policymakers relevant to managing risk, mobility, and air quality.

2.
Sci Total Environ ; 749: 141582, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33370892

RESUMEN

On 28th September 2018, a very high magnitude of earthquake Mw 7.5 struck the Palu city in the Island of Sulawesi, Indonesia. The main objective of this research is to estimate the earthquake risk based on probability and hazard in Palu region using cross-correlation among the derived parameters, Silhouette clustering (SC), pure locational clustering (PLC) based on hierarchical clustering analysis (HCA), convolutional neural network (CNN) and analytical hierarchy process (AHP) techniques. There is no specific or simple way of identifying risks as the definition of risk varies with time and space. The main aim of this study is: i) to conduct the clustering analysis to identify the earthquake-prone areas, ii) to develop a CNN model for probability estimation, and iii) to estimate and compare the risk using two calculation equations (Risk A and B). Owing to its high prediction ability, the CNN model assessed the probability while SC and PLC were implemented to understand the spatial clustering, Euclidean distance among clusters, spatial relationship and cross-correlation among the estimated Mw, PGA and intensity including events depth. Finally, AHP was implemented for the vulnerability assessment. To this end, earthquake probability assessment (EPA), susceptibility to seismic amplification (SSA) and earthquake vulnerability assessment (EVA) results were employed to generate risk A, while earthquake hazard assessment (EHA), SSA and EVA were used to generate risk B. The risk maps were compared and the differences in results were obtained. This research concludes that in the case of earthquake risk assessment (ERA), results obtained in Risk B are better than the risk A. This study achieved 89.47% accuracy for EPA while for EVA a consistency ratio of 0.07. These results have important implications for future large-scale risk assessment, land use planning and hazard mitigation.

3.
Sensors (Basel) ; 20(16)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764354

RESUMEN

Earthquake prediction is a popular topic among earth scientists; however, this task is challenging and exhibits uncertainty therefore, probability assessment is indispensable in the current period. During the last decades, the volume of seismic data has increased exponentially, adding scalability issues to probability assessment models. Several machine learning methods, such as deep learning, have been applied to large-scale images, video, and text processing; however, they have been rarely utilized in earthquake probability assessment. Therefore, the present research leveraged advances in deep learning techniques to generate scalable earthquake probability mapping. To achieve this objective, this research used a convolutional neural network (CNN). Nine indicators, namely, proximity to faults, fault density, lithology with an amplification factor value, slope angle, elevation, magnitude density, epicenter density, distance from the epicenter, and peak ground acceleration (PGA) density, served as inputs. Meanwhile, 0 and 1 were used as outputs corresponding to non-earthquake and earthquake parameters, respectively. The proposed classification model was tested at the country level on datasets gathered to update the probability map for the Indian subcontinent using statistical measures, such as overall accuracy (OA), F1 score, recall, and precision. The OA values of the model based on the training and testing datasets were 96% and 92%, respectively. The proposed model also achieved precision, recall, and F1 score values of 0.88, 0.99, and 0.93, respectively, for the positive (earthquake) class based on the testing dataset. The model predicted two classes and observed very-high (712,375 km2) and high probability (591,240.5 km2) areas consisting of 19.8% and 16.43% of the abovementioned zones, respectively. Results indicated that the proposed model is superior to the traditional methods for earthquake probability assessment in terms of accuracy. Aside from facilitating the prediction of the pixel values for probability assessment, the proposed model can also help urban-planners and disaster managers make appropriate decisions regarding future plans and earthquake management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA