Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30511050

RESUMEN

Automated measurement of affective behavior in psychopathology has been limited primarily to screening and diagnosis. While useful, clinicians more often are concerned with whether patients are improving in response to treatment. Are symptoms abating, is affect becoming more positive, are unanticipated side effects emerging? When treatment includes neural implants, need for objective, repeatable biometrics tied to neurophysiology becomes especially pressing. We used automated face analysis to assess treatment response to deep brain stimulation (DBS) in two patients with intractable obsessive-compulsive disorder (OCD). One was assessed intraoperatively following implantation and activation of the DBS device. The other was assessed three months post-implantation. Both were assessed during DBS on and o conditions. Positive and negative valence were quantified using a CNN trained on normative data of 160 non-OCD participants. Thus, a secondary goal was domain transfer of the classifiers. In both contexts, DBS-on resulted in marked positive affect. In response to DBS-off, affect flattened in both contexts and alternated with increased negative affect in the outpatient setting. Mean AUC for domain transfer was 0.87. These findings suggest that parametric variation of DBS is strongly related to affective behavior and may introduce vulnerability for negative affect in the event that DBS is discontinued.

2.
Artículo en Inglés | MEDLINE | ID: mdl-25574450

RESUMEN

Recognizing facial action units (AUs) is important for situation analysis and automated video annotation. Previous work has emphasized face tracking and registration and the choice of features classifiers. Relatively neglected is the effect of imbalanced data for action unit detection. While the machine learning community has become aware of the problem of skewed data for training classifiers, little attention has been paid to how skew may bias performance metrics. To address this question, we conducted experiments using both simulated classifiers and three major databases that differ in size, type of FACS coding, and degree of skew. We evaluated influence of skew on both threshold metrics (Accuracy, F-score, Cohen's kappa, and Krippendorf's alpha) and rank metrics (area under the receiver operating characteristic (ROC) curve and precision-recall curve). With exception of area under the ROC curve, all were attenuated by skewed distributions, in many cases, dramatically so. While ROC was unaffected by skew, precision-recall curves suggest that ROC may mask poor performance. Our findings suggest that skew is a critical factor in evaluating performance metrics. To avoid or minimize skew-biased estimates of performance, we recommend reporting skew-normalized scores along with the obtained ones.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA