Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 53: 101271, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34119711

RESUMEN

OBJECTIVE: NAD+ is a co-factor and substrate for enzymes maintaining energy homeostasis. Nicotinamide phosphoribosyltransferase (NAMPT) controls NAD+ synthesis, and in skeletal muscle, NAD+ is essential for muscle integrity. However, the underlying molecular mechanisms by which NAD+ synthesis affects muscle health remain poorly understood. Thus, the objective of the current study was to delineate the role of NAMPT-mediated NAD+ biosynthesis in skeletal muscle development and function. METHODS: To determine the role of Nampt in muscle development and function, we generated skeletal muscle-specific Nampt KO (SMNKO) mice. We performed a comprehensive phenotypic characterization of the SMNKO mice, including metabolic measurements, histological examinations, and RNA sequencing analyses of skeletal muscle from SMNKO mice and WT littermates. RESULTS: SMNKO mice were smaller, with phenotypic changes in skeletal muscle, including reduced fiber area and increased number of centralized nuclei. The majority of SMNKO mice died prematurely. Transcriptomic analysis identified that the gene encoding the mitochondrial permeability transition pore (mPTP) regulator Cyclophilin D (Ppif) was upregulated in skeletal muscle of SMNKO mice from 2 weeks of age, with associated increased sensitivity of mitochondria to the Ca2+-stimulated mPTP opening. Treatment of SMNKO mice with the Cyclophilin D inhibitor, Cyclosporine A, increased membrane integrity, decreased the number of centralized nuclei, and increased survival. CONCLUSIONS: Our study demonstrates that NAMPT is crucial for maintaining cellular Ca2+ homeostasis and skeletal muscle development, which is vital for juvenile survival.


Asunto(s)
Calcio/metabolismo , Citocinas/metabolismo , Homeostasis , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Desarrollo de Músculos
2.
Am J Physiol Cell Physiol ; 321(2): C257-C268, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106790

RESUMEN

Animal models clearly illustrate that the maintenance of skeletal muscle mass depends on the function and interaction of a heterogeneous population of resident and infiltrating mononuclear cells. Several lines of evidence suggest that mononuclear cells also play a role in muscle wasting in humans, and targeting these cells may open new treatment options for intervention or prevention in sarcopenia. Methodological and ethical constraints have perturbed exploration of the cellular characteristics and function of mononuclear cells in human skeletal muscle. Thus, investigations of cellular phenotypes often depend on immunohistochemical analysis of small tissue samples obtained by needle biopsies, which do not match the deep phenotyping of mononuclear cells obtained from animal models. Here, we have developed a protocol for fluorescence-activated cell sorting (FACS), based on single-cell RNA-sequencing data, for quantifying and characterizing mononuclear cell populations in human skeletal muscle. Muscle stem cells, fibro-adipogenic progenitors, and two subsets of macrophages (CD11c+/-) are present in needle biopsies in comparable quantities per milligram tissue to open surgical biopsies. We find that direct cell isolation is preferable due to a substantial shift in transcriptome when using preculture before the FACS procedure. Finally, in vitro validation of the cellular phenotype of muscle stem cells, fibro-adipogenic progenitors, and macrophages confirms population-specific traits. This study demonstrates that mononuclear cell populations can be quantified and subsequently analyzed from needle biopsy material and opens the perspective for future clinical studies of cellular mechanisms in muscle wasting.


Asunto(s)
Biopsia , Diferenciación Celular/fisiología , Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/citología , Adipogénesis/fisiología , Biopsia/métodos , Separación Celular/métodos , Citometría de Flujo/métodos , Humanos , Macrófagos/citología
3.
Diabetes Obes Metab ; 20(9): 2264-2273, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29752759

RESUMEN

AIMS: To test the hypothesis that brown adipose tissue (BAT) is a metformin target tissue by investigating in vivo uptake of [11 C]-metformin tracer in mice and studying in vitro effects of metformin on cultured human brown adipocytes. MATERIALS AND METHODS: Tissue-specific uptake of metformin was assessed in mice by PET/CT imaging after injection of [11 C]-metformin. Human brown adipose tissue was obtained from elective neck surgery and metformin transporter expression levels in human and murine BAT were determined by qPCR. Oxygen consumption in metformin-treated human brown adipocyte cell models was assessed by Seahorse XF technology. RESULTS: Injected [11 C]-metformin showed avid uptake in the murine interscapular BAT depot. Metformin exposure in BAT was similar to hepatic exposure. Non-specific inhibition of the organic cation transporter (OCT) protein by cimetidine administration eliminated BAT exposure to metformin, demonstrating OCT-mediated uptake. Gene expression profiles of OCTs in BAT revealed ample OCT3 expression in both human and mouse BAT. Incubation of a human brown adipocyte cell models with metformin reduced cellular oxygen consumption in a dose-dependent manner. CONCLUSION: These results support BAT as a putative metformin target.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Hipoglucemiantes/farmacocinética , Metformina/farmacocinética , Consumo de Oxígeno/efectos de los fármacos , Animales , Cimetidina/administración & dosificación , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Transcriptoma
4.
Sci Rep ; 7(1): 9436, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842630

RESUMEN

The anti-diabetic biguanide drugs metformin (METF) and phenformin (PHEN) may have anti-cancer effects. Biguanides suppress plasma growth factors, but nonetheless, the view that these mitochondrial inhibitors accumulate in tumor tissue to an extent that leads to severe energetic stress or alleviation of hypoxia-induced radioresistance is gaining ground. Our cell studies confirm that biguanides inhibits cell proliferation by targeting respiration, but only at highly suprapharmacological concentrations due to low drug retention. Biodistribution/PET studies of 11C-labeled metformin (11C-METF) revealed that plasma bioavailability remained well below concentrations with metabolic/anti-proliferative in vitro effects, following a high oral dose. Intraperitoneal administration resulted in higher drug concentrations, which affected metabolism in normal organs with high METF uptake (e.g., kidneys), but tumor drug retention peaked at low levels comparable to plasma levels and hypoxia was unaffected. Prolonged intraperitoneal treatment reduced tumor growth in two tumor models, however, the response did not reflect in vitro drug sensitivity, and tumor metabolism and hypoxia was unaffected. Our results do not support that direct inhibition of tumor cell respiration is responsible for reduced tumor growth, but future studies using 11C-METF-PET are warranted, preferably in neoplasia's originating from tissue with high drug transport capacity, to investigate the controversial idea of direct targeting.


Asunto(s)
Radioisótopos de Carbono , Metformina , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Tomografía de Emisión de Positrones , Animales , Biguanidas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Modelos Animales de Enfermedad , Glucosa/metabolismo , Xenoinjertos , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacocinética , Hipoxia/metabolismo , Metformina/química , Metformina/farmacocinética , Ratones , Neoplasias/patología , Tomografía de Emisión de Positrones/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular , Microambiente Tumoral/efectos de los fármacos
5.
Sci Rep ; 6: 35952, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27782167

RESUMEN

The type-2 diabetes drug metformin has proven to have protective effects in several renal disease models. Here, we investigated the protective effects in a 3-day unilateral ureteral obstruction (3dUUO) mouse model. Compared with controls, ureteral obstructed animals displayed increased tubular damage and inflammation. Metformin treatment attenuated inflammation, increased the anti-oxidative response and decreased tubular damage. Hepatic metformin uptake depends on the expression of organic cation transporters (OCTs). To test whether the effects of metformin in the kidney are dependent on these transporters, we tested metformin treatment in OCT1/2-/- mice. Even though exposure of metformin in the kidney was severely decreased in OCT1/2-/- mice when evaluated with [11C]-Metformin and PET/MRI, we found that the protective effects of metformin were OCT1/2 independent when tested in this model. AMP-activated protein kinase (AMPK) has been suggested as a key mediator of the effects of metformin. When using an AMPK-ß1 KO mouse model, the protective effects of metformin still occurred in the 3dUUO model. In conclusion, these results show that metformin has a beneficial effect in early stages of renal disease induced by 3dUUO. Furthermore, these effects appear to be independent of the expression of OCT1/2 and AMPK-ß1, the most abundant AMPK-ß isoform in the kidney.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Metformina/farmacología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Proteínas Quinasas Activadas por AMP/deficiencia , Proteínas Quinasas Activadas por AMP/genética , Animales , Antioxidantes/metabolismo , Modelos Animales de Enfermedad , Femenino , Receptor Celular 1 del Virus de la Hepatitis A/genética , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Inflamación/prevención & control , Riñón/patología , Masculino , Metformina/farmacocinética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 1 de Transcripción de Unión a Octámeros/deficiencia , Factor 1 de Transcripción de Unión a Octámeros/genética , Transportador 2 de Cátion Orgánico/deficiencia , Transportador 2 de Cátion Orgánico/genética , Sustancias Protectoras/farmacocinética , Sustancias Protectoras/farmacología , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/fisiopatología
6.
Diabetes ; 65(6): 1724-30, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26993065

RESUMEN

Metformin is the most commonly prescribed oral antidiabetic drug, with well-documented beneficial preventive effects on diabetic complications. Despite being in clinical use for almost 60 years, the underlying mechanisms for metformin action remain elusive. Organic cation transporters (OCT), including multidrug and toxin extrusion proteins (MATE), are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic positron emission tomography with [(11)C]-labeled metformin ([(11)C]-metformin) in mice to investigate the role of OCT and MATE in a well-established target tissue, the liver, and a putative target of metformin, the small intestine. Ablation of OCT1 and OCT2 significantly reduced the distribution of metformin in the liver and small intestine. In contrast, inhibition of MATE1 with pyrimethamine caused accumulation of metformin in the liver but did not affect distribution in the small intestine. The demonstration of OCT-mediated transport into the small intestine provides evidence of direct effects of metformin in this tissue. OCT and MATE have important but separate roles in uptake and elimination of metformin in the liver, but this is not due to changes in biliary secretion. [(11)C]-Metformin holds great potential as a tool to determine the pharmacokinetic properties of metformin in clinical studies.


Asunto(s)
Hipoglucemiantes/farmacocinética , Intestino Delgado/metabolismo , Hígado/metabolismo , Metformina/farmacocinética , Animales , Transporte Biológico , Ratones , Proteínas de Transporte de Catión Orgánico/metabolismo , Tomografía de Emisión de Positrones/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...