Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
J Nutr ; 152(5): 1358-1369, 2022 05 05.
Article En | MEDLINE | ID: mdl-35020932

BACKGROUND: The wireless motility capsule (WMC) technique is a noninvasive and radiation-free method for measuring regional and whole gut transit in response to ingestion of a granola bar (SmartBar) or an eggbeater meal. The WMC has the potential to measure gastrointestinal transit in metabolic research as part of a standardized mixed meal tolerance test. OBJECTIVES: To evaluate gastrointestinal transit with the WMC and postprandial plasma/serum concentrations of metabolites and gastrointestinal hormones as well as subjective appetite following ingestion of a SmartBar compared with a standardized mixed meal. METHODS: Fourteen healthy participants [3 men, median (IQR) age 53.8 (45.8; 64.50) y, body weight 63.9 (59.9; 69.7) kg, BMI 23.1 (21.8; 23.9) kg/m2] completed a 2-d crossover study. Following ingestion of either a SmartBar (260 kcal, 7 energy percent (E%) fat, 74E% carbohydrate, and 19E% protein) or a standardized mixed meal (498 kcal, 34E% fat, 49E% carbohydrate, and 17E% protein), participants swallowed the WMC. Blood samples were drawn in the fasted state and postprandially for analyses of gastrointestinal hormones and metabolites. The primary outcome was difference in gastric emptying time between the 2 test days. Wilcoxon signed rank tests were used to test differences between test days. RESULTS: Median (IQR) gastric emptying time was 98.0 (70.0; 113.0) min longer (P = 0.001) and incremental area under the curve of triglyceride, glucose-dependent insulinotropic polypeptide, and peptide YY were 40 mmol/L × min, 45.7%, and 63.7% greater after the standardized mixed meal compared with the SmartBar (all P < 0.001). CONCLUSIONS: The WMC can be used in combination with a standardized mixed meal for evaluation of gastrointestinal transit in healthy men and women. Gastric emptying time was prolonged in response to the standardized mixed meal whereas transit times of the small bowel, colon, and whole gut did not differ between the test meals.


Gastrointestinal Hormones , Gastrointestinal Transit , Carbohydrates , Cross-Over Studies , Female , Gastric Emptying/physiology , Gastrointestinal Transit/physiology , Humans , Male , Meals , Middle Aged
2.
Nutrients ; 13(9)2021 Sep 14.
Article En | MEDLINE | ID: mdl-34579074

Gut-derived hormones have been suggested to play a role in bone homeostasis following food intake, although the associations are highly complex and not fully understood. In a randomized, two-day cross-over study on 14 healthy individuals, we performed postprandial time-course studies to examine the associations of the bone remodeling markers carboxyl-terminal collagen type I crosslinks (CTX) and procollagen type 1 N-terminal propeptide (P1NP) with the gut hormones glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) using two different meal types-a standardized mixed meal (498 kcal) or a granola bar (260 kcal). Plasma concentrations of total GIP, total GLP-1, total PYY, CTX, and P1NP were measured up to 240 min after meal intake, and the incremental area under the curve (iAUC) for each marker was calculated. The iAUC of CTX and P1NP were used to assess associations with the iAUC of GIP, GLP-1, and PYY in linear mixed effect models adjusted for meal type. CTX was positively associated with GIP and GLP-1, and it was inversely associated with PYY (all p < 0.001). No associations of P1NP with GIP or GLP-1 and PYY were found. In conclusion, the postprandial responses of the gut hormones GIP, GLP-1, and PYY are associated with the bone resorption marker CTX, supporting a link between gut hormones and bone homeostasis following food intake.


Bone Remodeling/physiology , Bone Resorption/blood , Bone and Bones/physiology , Eating/physiology , Gastrointestinal Hormones/blood , Postprandial Period , Area Under Curve , Biomarkers/blood , Collagen Type I/blood , Cross-Over Studies , Female , Gastric Inhibitory Polypeptide/blood , Glucagon-Like Peptide 1/blood , Healthy Volunteers , Homeostasis , Humans , Male , Meals , Middle Aged , Peptide Fragments/blood , Peptide YY/blood , Peptides/blood , Procollagen/blood , Receptors, Gastrointestinal Hormone/blood
...