Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 154
1.
Small Methods ; : e2301740, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639016

Microscopy has been pivotal in improving the understanding of structure-function relationships at the nanoscale and is by now ubiquitous in most characterization labs. However, traditional microscopy operations are still limited largely by a human-centric click-and-go paradigm utilizing vendor-provided software, which limits the scope, utility, efficiency, effectiveness, and at times reproducibility of microscopy experiments. Here, a coupled software-hardware platform is developed that consists of a software package termed AEcroscopy (short for Automated Experiments in Microscopy), along with a field-programmable-gate-array device with LabView-built customized acquisition scripts, which overcome these limitations and provide the necessary abstractions toward full automation of microscopy platforms. The platform works across multiple vendor devices on scanning probe microscopes and electron microscopes. It enables customized scan trajectories, processing functions that can be triggered locally or remotely on processing servers, user-defined excitation waveforms, standardization of data models, and completely seamless operation through simple Python commands to enable a plethora of microscopy experiments to be performed in a reproducible, automated manner. This platform can be readily coupled with existing machine-learning libraries and simulations, to provide automated decision-making and active theory-experiment optimization to turn microscopes from characterization tools to instruments capable of autonomous model refinement and physics discovery.

2.
ACS Nano ; 18(17): 11153-11164, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38641345

Graphene is atomically thin, possesses excellent thermal conductivity, and is able to withstand high current densities, making it attractive for many nanoscale applications such as field-effect transistors, interconnects, and thermal management layers. Enabling integration of graphene into such devices requires nanostructuring, which can have a drastic impact on the self-heating properties, in particular at high current densities. Here, we use a combination of scanning thermal microscopy, finite element thermal analysis, and operando scanning transmission electron microscopy techniques to observe prototype graphene devices in operation and gain a deeper understanding of the role of geometry and interfaces during high current density operation. We find that Peltier effects significantly influence the operational limit due to local electrical and thermal interfacial effects, causing asymmetric temperature distribution in the device. Thus, our results indicate that a proper understanding and design of graphene devices must include consideration of the surrounding materials, interfaces, and geometry. Leveraging these aspects provides opportunities for engineered extreme operation devices.

4.
Nat Commun ; 14(1): 7550, 2023 Nov 20.
Article En | MEDLINE | ID: mdl-37985658

Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.

5.
Nat Commun ; 14(1): 7196, 2023 Nov 08.
Article En | MEDLINE | ID: mdl-37938577

Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.

6.
Microsc Microanal ; 29(Supplement_1): 1368-1369, 2023 Jul 22.
Article En | MEDLINE | ID: mdl-37613717
7.
Adv Mater ; 35(45): e2301560, 2023 Nov.
Article En | MEDLINE | ID: mdl-37574252

The scanning transmission electron microscope, a workhorse instrument in materials characterization, is being transformed into an atomic-scale material-manipulation platform. With an eye on the trajectory of recent developments and the obstacles toward progress in this field, a vision for a path toward an expanded set of capabilities and applications is provided. The microscope is reconceptualized as an instrument for fabrication and synthesis with the capability to image and characterize atomic-scale structural formation as it occurs. Further development and refinement of this approach may have substantial impact on research in microelectronics, quantum information science, and catalysis, where precise control over atomic-scale structure and chemistry of a few "active sites" can have a dramatic impact on larger-scale functionality and where developing a better understanding of atomic-scale processes can help point the way to larger-scale synthesis approaches.

8.
Small Methods ; 7(10): e2300401, 2023 Oct.
Article En | MEDLINE | ID: mdl-37415539

The engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic-scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron-beam-based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top-down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real-time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.

9.
Adv Mater ; 35(32): e2302906, 2023 Aug.
Article En | MEDLINE | ID: mdl-37309684

Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.

10.
Nano Lett ; 23(6): 2339-2346, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36877825

Direct-write processes enable the alteration or deposition of materials in a continuous, directable, sequential fashion. In this work, we demonstrate an electron beam direct-write process in an aberration-corrected scanning transmission electron microscope. This process has several fundamental differences from conventional electron-beam-induced deposition techniques, where the electron beam dissociates precursor gases into chemically reactive products that bond to a substrate. Here, we use elemental tin (Sn) as a precursor and employ a different mechanism to facilitate deposition. The atomic-sized electron beam is used to generate chemically reactive point defects at desired locations in a graphene substrate. Temperature control of the sample is used to enable the precursor atoms to migrate across the surface and bond to the defect sites, thereby enabling atom-by-atom direct writing.

11.
Adv Mater ; 35(14): e2210116, 2023 Apr.
Article En | MEDLINE | ID: mdl-36635517

The ability to deterministically fabricate nanoscale architectures with atomic precision is the central goal of nanotechnology, whereby highly localized changes in the atomic structure can be exploited to control device properties at their fundamental physical limit. Here, an automated, feedback-controlled atomic fabrication method is reported and the formation of 1D-2D heterostructures in MoS2 is demonstrated through selective transformations along specific crystallographic orientations. The atomic-scale probe of an aberration-corrected scanning transmission electron microscope (STEM) is used, and the shape and symmetry of the scan pathway relative to the sample orientation are controlled. The focused and shaped electron beam is used to reliably create Mo6 S6 nanowire (MoS-NW) terminated metallic-semiconductor 1D-2D edge structures within a pristine MoS2 monolayer with atomic precision. From these results, it is found that a triangular beam path aligned along the zig-zag sulfur terminated (ZZS) direction forms stable MoS-NW edge structures with the highest degree of fidelity without resulting in disordering of the surrounding MoS2 monolayer. Density functional theory (DFT) calculations and ab initio molecular dynamic simulations (AIMD) are used to calculate the energetic barriers for the most stable atomic edge structures and atomic transformation pathways. These discoveries provide an automated method to improve understanding of atomic-scale transformations while opening a pathway toward more precise atomic-scale engineering of materials.

12.
Microsc Microanal ; : 1-17, 2022 May 30.
Article En | MEDLINE | ID: mdl-35644675

Over the last few years, a new mode for imaging in the scanning transmission electron microscope (STEM) has gained attention as it permits the direct visualization of sample conductivity and electrical connectivity. When the electron beam (e-beam) is focused on the sample in the STEM, secondary electrons (SEs) are generated. If the sample is conductive and electrically connected to an amplifier, the SE current can be measured as a function of the e-beam position. This scenario is similar to the better-known scanning electron microscopy-based technique, electron beam-induced current imaging, except that the signal in the STEM is generated by the emission of SEs, hence the name secondary electron e-beam-induced current (SEEBIC), and in this case, the current flows in the opposite direction. Here, we provide a brief review of recent work in this area, examine the various contrast generation mechanisms associated with SEEBIC, and illustrate its use for the characterization of graphene nanoribbon devices.

13.
Small Methods ; 6(3): e2101245, 2022 Mar.
Article En | MEDLINE | ID: mdl-35312230

Graphene is proposed for use in various nanodevice designs, many of which harness emergent quantum properties for device functionality. However, visualization, measurement, and manipulation become nontrivial at nanometer and atomic scales, representing a significant challenge for device fabrication, characterization, and optimization at length scales where quantum effects emerge. Here, proof of principle results at the crossroads between 2D nanoelectronic devices, e-beam-induced modulation, and imaging with secondary electron e-beam induced currents (SEEBIC) is presented. A device platform compatible with scanning transmission electron microscopy investigations is introduced. Then how the SEEBIC imaging technique can be used to visualize conductance and connectivity in single layer graphene nanodevices, even while supported on a thicker substrate (conditions under which conventional imaging fails) is shown. Finally, it is shown that the SEEBIC imaging technique can detect subtle differences in charge transport through time in nonohmic graphene nanoconstrictions indicating the potential to reveal dynamic electronic processes.

14.
Adv Mater ; 34(2): e2106426, 2022 Jan.
Article En | MEDLINE | ID: mdl-34647655

Since their discovery in late 1940s, perovskite ferroelectric materials have become one of the central objects of condensed matter physics and materials science due to the broad spectrum of functional behaviors they exhibit, including electro-optical phenomena and strong electromechanical coupling. In such disordered materials, the static properties of defects such as oxygen vacancies are well explored but the dynamic effects are less understood. In this work, the first observation of enhanced electromechanical response in BaTiO3 thin films is reported driven via dynamic local oxygen vacancy control in piezoresponse force microscopy (PFM). A persistence in peizoelectricity past the bulk Curie temperature and an enhanced electromechanical response due to a created internal electric field that further enhances the intrinsic electrostriction are explicitly demonstrated. The findings are supported by a series of temperature dependent band excitation PFM in ultrahigh vacuum and a combination of modeling techniques including finite element modeling, reactive force field, and density functional theory. This study shows the pivotal role that dynamics of vacancies in complex oxides can play in determining functional properties and thus provides a new route toward- achieving enhanced ferroic response with higher functional temperature windows in ferroelectrics and other ferroic materials.

15.
Small Methods ; 5(4): e2000950, 2021 Apr.
Article En | MEDLINE | ID: mdl-34927845

Graphene-based devices hold promise for a wide range of technological applications. Yet characterizing the structure and the electrical properties of a material that is only one atomic layer thick still poses technical challenges. Recent investigations indicate that secondary-electron electron-beam-induced current (SE-EBIC) imaging can reveal subtle details regarding electrical conductivity and electron transport with high spatial resolution. Here, it is shown that the SEEBIC imaging mode can be used to detect suspended single layers of graphene and distinguish between different numbers of layers. Pristine and contaminated areas of graphene are also compared to show that pristine graphene exhibits a substantially lower SE yield than contaminated regions. This SEEBIC imaging mode may provide valuable information for the engineering of surface coatings where SE yield is a priority.

16.
Small Methods ; 5(5): e2001279, 2021 May.
Article En | MEDLINE | ID: mdl-34928092

Electrochemical strain microscopy (ESM) is a distinguished method to characterize Li-ion mobility in energy materials with extremely high spatial resolution. The exact origin of the cantilever deflection when the technique is applied on solid state electrolytes (SSEs) is currently discussed in the literature. Understanding local properties and influences on ion mobility in SSEs is of utmost importance to improve such materials for next generation batteries. Here, the exact signal formation process of ESM when applied on sodium super ionic conductor (NASICON)-type SSE containing Na- and Li-ions is investigated. Changes in the dielectric properties, which are linked to the local chemical composition, are found to be responsible for the observed contrast in the deflection of the cantilever instead of a physical volume change as a result of Vegard´s Law. The cantilever response is strongly reduced in areas of high sodium content which is attributed to a reduction of the tip-sample capacitance in comparison to areas with high lithium content. This is the first time a direct link between electrostatic forces in contact mode and local chemical information is demonstrated on SSEs. The results open up new possibilities in information gain since dielectric properties are sensitive to subtle changes in local chemical composition.

17.
ACS Nano ; 15(9): 15096-15103, 2021 Sep 28.
Article En | MEDLINE | ID: mdl-34495651

The dynamics of complex topological defects in ferroelectric materials is explored using automated experimentation in piezoresponse force microscopy. Specifically, a complex trigger system (i.e., "FerroBot") is employed to study metastable domain-wall dynamics in Pb0.6Sr0.4TiO3 thin films. Several regimes of superdomain wall dynamics have been identified, including smooth domain-wall motion and significant reconfiguration of the domain structures. We have further demonstrated that microscopic mechanisms of the domain-wall dynamics can be identified; i.e., domain-wall bending can be separated from irreversible domain reconfiguration regimes. In conjunction, phase-field modeling was used to corroborate the observed mechanisms. As such, the observed superdomain dynamics can provide a model system for classical ferroelectric dynamics, much like how colloidal crystals provide a model system for atomic and molecular systems.

18.
ACS Nano ; 15(8): 12604-12627, 2021 Aug 24.
Article En | MEDLINE | ID: mdl-34269558

Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics to self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiments (AE) in imaging. Here, we aim to analyze the major pathways toward AE in imaging methods with sequential image formation mechanisms, focusing on scanning probe microscopy (SPM) and (scanning) transmission electron microscopy ((S)TEM). We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment. As such, this analysis should explore the human and ML/AI roles prior to and during the experiment and consider the latencies, biases, and prior knowledge of the decision-making process. Similarly, such discussion should include the limitations of the existing imaging systems, including intrinsic latencies, non-idealities, and drifts comprising both correctable and stochastic components. We further pose that the role of the AE in microscopy is not the exclusion of human operators (as is the case for autonomous driving), but rather automation of routine operations such as microscope tuning, etc., prior to the experiment, and conversion of low latency decision making processes on the time scale spanning from image acquisition to human-level high-order experiment planning. Overall, we argue that ML/AI can dramatically alter the (S)TEM and SPM fields; however, this process is likely to be highly nontrivial and initiated by combined human-ML workflows and will bring challenges both from the microscope and ML/AI sides. At the same time, these methods will enable opportunities and paradigms for scientific discovery and nanostructure fabrication.


Artificial Intelligence , Robotics , Humans , Electrons , Machine Learning , Microscopy, Scanning Probe
19.
ACS Nano ; 15(7): 11253-11262, 2021 Jul 27.
Article En | MEDLINE | ID: mdl-34228427

Polarization dynamics in ferroelectric materials are explored via automated experiment in piezoresponse force microscopy/spectroscopy (PFM/S). A Bayesian optimization (BO) framework for imaging is developed, and its performance for a variety of acquisition and pathfinding functions is explored using previously acquired data. The optimized algorithm is then deployed on an operational scanning probe microscope (SPM) for finding areas of large electromechanical response in a thin film of PbTiO3, with results showing that, with just 20% of the area sampled, most high-response clusters were captured. This approach can allow performing more complex spectroscopies in SPM that were previously not possible due to time constraints and sample stability. Improvements to the framework to enable the incorporation of more prior information and improve efficiency further are modeled and discussed.

20.
Sci Adv ; 7(17)2021 Apr.
Article En | MEDLINE | ID: mdl-33883126

We suggest and implement an approach for the bottom-up description of systems undergoing large-scale structural changes and chemical transformations from dynamic atomically resolved imaging data, where only partial or uncertain data on atomic positions are available. This approach is predicated on the synergy of two concepts, the parsimony of physical descriptors and general rotational invariance of noncrystalline solids, and is implemented using a rotationally invariant extension of the variational autoencoder applied to semantically segmented atom-resolved data seeking the most effective reduced representation for the system that still contains the maximum amount of original information. This approach allowed us to explore the dynamic evolution of electron beam-induced processes in a silicon-doped graphene system, but it can be also applied for a much broader range of atomic scale and mesoscopic phenomena to introduce the bottom-up order parameters and explore their dynamics with time and in response to external stimuli.

...