Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Med Sci Sports Exerc ; 56(4): 612-622, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-37994085

PURPOSE: Short periods of limb immobilization lower myofibrillar protein synthesis rates. Within skeletal muscle, the extracellular matrix of connective proteins is recognized as an important factor determining the capacity to transmit contractile force. Little is known regarding the impact of immobilization and subsequent recovery on muscle connective protein synthesis rates. This study examined the impact of 1 wk of leg immobilization and 2 wk of subsequent ambulant recovery on daily muscle connective protein synthesis rates. METHODS: Thirty healthy, young (24 ± 5 yr) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Deuterium oxide ingestion was applied over the entire period, and muscle biopsy samples were collected before immobilization, after immobilization, and after recovery to measure muscle connective protein synthesis rates and mRNA expression of key extracellular matrix proteins (collagen I, collagen III), glycoproteins (fibronectin, tenascin-C), and proteoglycans (fibromodulin, and decorin). A two-way repeated-measures (time-leg) ANOVA was used to compare changes in muscle connective protein synthesis rates during immobilization and recovery. RESULTS: During immobilization, muscle connective protein synthesis rates were lower in the immobilized (1.07 ± 0.30%·d -1 ) compared with the nonimmobilized (1.48 ± 0.44%·d -1 ; P < 0.01) leg. When compared with the immobilization period, connective protein synthesis rates in the immobilized leg increased during subsequent recovery (1.48 ± 0.64%·d -1 ; P < 0.01). After recovery, skeletal muscle collagen I, collagen III, fibronectin, fibromodulin, and decorin mRNA expression increased when compared with the postimmobilization time point (all P < 0.001). CONCLUSIONS: One week of leg immobilization lowers muscle connective protein synthesis rates. Muscle connective protein synthesis rates increase during subsequent ambulant recovery, which is accompanied by increased mRNA expression of key extracellular matrix proteins.


Fibronectins , Leg , Male , Humans , Young Adult , Fibromodulin/metabolism , Decorin , Muscle, Skeletal/metabolism , Extracellular Matrix Proteins/metabolism , Collagen/metabolism , Collagen Type I , RNA, Messenger/metabolism
2.
Clin Nutr ; 42(8): 1436-1444, 2023 08.
Article En | MEDLINE | ID: mdl-37441814

BACKGROUND & AIMS: Hemodialysis removes amino acids from the circulation, thereby stimulating muscle proteolysis. Protein ingestion during hemodialysis can compensate for amino acid removal but may also increase uremic toxin production. Branched-chain ketoacid (BCKA) co-ingestion may provide an additional anabolic stimulus without adding to uremic toxin accumulation. In the present study we assessed the impact of BCKA co-ingestion with protein on forearm amino acid balance and amino acid oxidation during hemodialysis. METHODS: Nine patients (age: 73 ± 10 y) on chronic hemodialysis participated in this crossover trial. During two 4-h hemodialysis sessions, patients ingested 18 g protein with (PRO + BCKA) or without (PRO) 9 g BCKAs in a randomized order. Test beverages were labeled with L-[ring-13C6]-phenylalanine and provided throughout the last 3 h of hemodialysis as 18 equal sips consumed with 10-min intervals. Arterial and venous plasma as well as breath samples were collected frequently throughout hemodialysis. RESULTS: Arterial plasma total amino acid (TAA) concentrations during PRO and PRO + BCKA treatments were significantly lower after 1 h of hemodialysis (2.6 ± 0.3 and 2.6 ± 0.3 mmol/L, respectively) when compared to pre-hemodialysis concentrations (4.2 ± 1.0 and 4.0 ± 0.5 mmol/L, respectively; time effect: P < 0.001). Arterial plasma TAA concentrations increased throughout test beverage ingestion (time effect: P = 0.027) without differences between treatments (time∗treatment: P = 0.62). Forearm arteriovenous TAA balance during test beverage ingestion did not differ between timepoints (time effect: P = 0.31) or treatments (time∗treatment: P = 0.34). Whole-body phenylalanine oxidation was 33 ± 16% lower during PRO + BCKA when compared to PRO treatments (P < 0.001). CONCLUSIONS: BCKA co-ingestion with protein during hemodialysis does not improve forearm net protein balance but lowers amino acid oxidation.


Amino Acids , Uremic Toxins , Humans , Middle Aged , Aged , Aged, 80 and over , Cross-Over Studies , Proteins/metabolism , Keto Acids , Phenylalanine/metabolism , Renal Dialysis , Eating , Muscle, Skeletal/metabolism
3.
J Nutr ; 153(6): 1718-1729, 2023 06.
Article En | MEDLINE | ID: mdl-37277162

BACKGROUND: Muscle mass and strength decrease during short periods of immobilization and slowly recover during remobilization. Recent artificial intelligence applications have identified peptides that appear to possess anabolic properties in in vitro assays and murine models. OBJECTIVES: This study aimed to compare the impact of Vicia faba peptide network compared with milk protein supplementation on muscle mass and strength loss during limb immobilization and regain during remobilization. METHODS: Thirty young (24 ± 5 y) men were subjected to 7 d of one-legged knee immobilization followed by 14 d of ambulant recovery. Participants were randomly allocated to ingest either 10 g of the Vicia faba peptide network (NPN_1; n = 15) or an isonitrogenous control (milk protein concentrate; MPC; n = 15) twice daily throughout the study. Single-slice computed tomography scans were performed to assess quadriceps cross-sectional area (CSA). Deuterium oxide ingestion and muscle biopsy sampling were applied to measure myofibrillar protein synthesis rates. RESULTS: Leg immobilization decreased quadriceps CSA (primary outcome) from 81.9 ± 10.6 to 76.5 ± 9.2 cm2 and from 74.8 ± 10.6 to 71.5 ± 9.8 cm2 in the NPN_1 and MPC groups, respectively (P < 0.001). Remobilization partially recovered quadriceps CSA (77.3 ± 9.3 and 72.6 ± 10.0 cm2, respectively; P = 0.009), with no differences between the groups (P > 0.05). During immobilization, myofibrillar protein synthesis rates (secondary outcome) were lower in the immobilized leg (1.07% ± 0.24% and 1.10% ± 0.24%/d, respectively) than in the non-immobilized leg (1.55% ± 0.27% and 1.52% ± 0.20%/d, respectively; P < 0.001), with no differences between the groups (P > 0.05). During remobilization, myofibrillar protein synthesis rates in the immobilized leg were greater with NPN_1 than those with MPC (1.53% ± 0.38% vs. 1.23% ± 0.36%/d, respectively; P = 0.027). CONCLUSION: NPN_1 supplementation does not differ from milk protein in modulating the loss of muscle size during short-term immobilization and the regain during remobilization in young men. NPN_1 supplementation does not differ from milk protein supplementation in modulating the myofibrillar protein synthesis rates during immobilization but further increases myofibrillar protein synthesis rates during remobilization.


Vicia faba , Male , Humans , Animals , Mice , Vicia faba/metabolism , Muscle Proteins/metabolism , Muscular Atrophy/metabolism , Milk Proteins/pharmacology , Milk Proteins/metabolism , Artificial Intelligence , Muscle Strength , Immobilization/methods , Quadriceps Muscle/metabolism , Quadriceps Muscle/pathology , Dietary Supplements , Peptides/metabolism , Muscle, Skeletal/metabolism
...