Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Comput Methods Programs Biomed ; 248: 108111, 2024 May.
Article En | MEDLINE | ID: mdl-38479147

BACKGROUND AND OBJECTIVE: Training deep learning models for medical image segmentation require large annotated datasets, which can be expensive and time-consuming to create. Active learning is a promising approach to reduce this burden by strategically selecting the most informative samples for segmentation. This study investigates the use of active learning for efficient left ventricle segmentation in echocardiography with sparse expert annotations. METHODS: We adapt and evaluate various sampling techniques, demonstrating their effectiveness in judiciously selecting samples for segmentation. Additionally, we introduce a novel strategy, Optimised Representativeness Sampling, which combines feature-based outliers with the most representative samples to enhance annotation efficiency. RESULTS: Our findings demonstrate a substantial reduction in annotation costs, achieving a remarkable 99% upper bound performance while utilising only 20% of the labelled data. This equates to a reduction of 1680 images needing annotation within our dataset. When applied to a publicly available dataset, our approach yielded a remarkable 70% reduction in required annotation efforts, representing a significant advancement compared to baseline active learning strategies, which achieved only a 50% reduction. Our experiments highlight the nuanced performance of diverse sampling strategies across datasets within the same domain. CONCLUSIONS: The study provides a cost-effective approach to tackle the challenges of limited expert annotations in echocardiography. By introducing a distinct dataset, made publicly available for research purposes, our work contributes to the field's understanding of efficient annotation strategies in medical image segmentation.


Echocardiography , Heart Ventricles , Heart Ventricles/diagnostic imaging , Image Processing, Computer-Assisted
2.
Comput Biol Med ; 171: 108192, 2024 Mar.
Article En | MEDLINE | ID: mdl-38417384

Doppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce variability, prompting the need for automated solutions. This study introduces an innovative deep learning model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent from Electrocardiogram information. A dataset of Doppler images annotated by multiple expert cardiologists was established, serving as a robust benchmark. The model leverages heatmap regression networks, achieving 96% detection accuracy. The model discrepancy with the expert consensus falls comfortably within the range of inter- and intra-observer variability in measuring Doppler peak velocities. The dataset and models are open-source, fostering further research and clinical application.


Deep Learning , Blood Flow Velocity , Echocardiography, Doppler/methods , Mitral Valve/diagnostic imaging , Ultrasonography, Doppler
3.
Med Biol Eng Comput ; 61(5): 911-926, 2023 May.
Article En | MEDLINE | ID: mdl-36631666

Tissue Doppler imaging is an essential echocardiographic technique for the non-invasive assessment of myocardial blood velocity. Image acquisition and interpretation are performed by trained operators who visually localise landmarks representing Doppler peak velocities. Current clinical guidelines recommend averaging measurements over several heartbeats. However, this manual process is both time-consuming and disruptive to workflow. An automated system for accurate beat isolation and landmark identification would be highly desirable. A dataset of tissue Doppler images was annotated by three cardiologist experts, providing a gold standard and allowing for observer variability comparisons. Deep neural networks were trained for fully automated predictions on multiple heartbeats and tested on tissue Doppler strips of arbitrary length. Automated measurements of peak Doppler velocities show good Bland-Altman agreement (average standard deviation of 0.40 cm/s) with consensus expert values; less than the inter-observer variability (0.65 cm/s). Performance is akin to individual experts (standard deviation of 0.40 to 0.75 cm/s). Our approach allows for > 26 times as many heartbeats to be analysed, compared to a manual approach. The proposed automated models can accurately and reliably make measurements on tissue Doppler images spanning several heartbeats, with performance indistinguishable from that of human experts, but with significantly shorter processing time. HIGHLIGHTS: • Novel approach successfully identifies heartbeats from Tissue Doppler Images • Accurately measures peak velocities on several heartbeats • Framework is fast and can make predictions on arbitrary length images • Patient dataset and models made public for future benchmark studies.


Algorithms , Echocardiography, Doppler , Humans , Echocardiography, Doppler/methods , Neural Networks, Computer , Echocardiography , Myocardium
4.
Comput Biol Med ; 133: 104373, 2021 06.
Article En | MEDLINE | ID: mdl-33857775

BACKGROUND: Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable. METHODS: We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements. RESULTS: When compared with the ground-truth, our model shows an average frame difference of -0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of -1.34 ± 3.27 and -0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, -5.51]±[2.29, 4.26] and [-0.97, -3.46]±[3.67, 4.68] for ED and ES events, respectively. CONCLUSIONS: The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time.


Echocardiography , Neural Networks, Computer , Diastole , Humans , Observer Variation
...