Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
New Phytol ; 239(2): 494-505, 2023 07.
Article En | MEDLINE | ID: mdl-36810736

Foliar anthocyanins, as well as other secondary metabolites, accumulate transiently under nutritional stress. A misconception that only nitrogen or phosphorus deficiency induces leaf purpling/reddening has led to overuse of fertilizers that burden the environment. Here, we emphasize that several other nutritional imbalances induce anthocyanin accumulation, and nutrient-specific differences in this response have been reported for some deficiencies. A range of ecophysiological functions have been attributed to anthocyanins. We discuss the proposed functions and signalling pathways that elicit anthocyanin synthesis in nutrient-stressed leaves. Knowledge from the fields of genetics, molecular biology, ecophysiology and plant nutrition is combined to deduce how and why anthocyanins accumulate under nutritional stress. Future research to fully understand the mechanisms and nuances of foliar anthocyanin accumulation in nutrient-stressed crops could be utilized to allow these leaf pigments to act as bioindicators for demand-oriented application of fertilizers. This would benefit the environment, being timely due to the increasing impact of the climate crisis on crop performance.


Anthocyanins , Fertilizers , Anthocyanins/metabolism , Plant Leaves/physiology , Crops, Agricultural/metabolism
2.
Trends Plant Sci ; 27(2): 166-179, 2022 02.
Article En | MEDLINE | ID: mdl-34565672

Stomatal pores facilitate gaseous exchange between the inner air spaces of the leaf and the atmosphere. The pores open to enable CO2 entry for photosynthesis and close to reduce transpirational water loss. How stomata respond to the environment has long attracted interest in modeling as a tool to understand the consequences for the plant and for the ecosystem. Models that focus on stomatal conductance for gas exchange make intuitive sense, but such models need also to connect with the mechanics of the guard cells that regulate pore aperture if we are to understand the 'decisions made' by stomata, their impacts on the plant and on the global environment.


Plant Stomata , Water , Carbon Dioxide , Ecosystem , Photosynthesis , Plant Leaves
3.
Nat Plants ; 7(9): 1301-1313, 2021 09.
Article En | MEDLINE | ID: mdl-34326530

Stomata of most plants close to preserve water when the demand for CO2 by photosynthesis is reduced. Stomatal responses are slow compared with photosynthesis, and this kinetic difference erodes assimilation and water-use efficiency under fluctuating light. Despite a deep knowledge of guard cells that regulate the stoma, efforts to enhance stomatal kinetics are limited by our understanding of its control by foliar CO2. Guided by mechanistic modelling that incorporates foliar CO2 diffusion and mesophyll photosynthesis, here we uncover a central role for endomembrane Ca2+ stores in guard cell responsiveness to fluctuating light and CO2. Modelling predicted and experiments demonstrated a delay in Ca2+ cycling that was enhanced by endomembrane Ca2+-ATPase mutants, altering stomatal conductance and reducing assimilation and water-use efficiency. Our findings illustrate the power of modelling to bridge the gap from the guard cell to whole-plant photosynthesis, and they demonstrate an unforeseen latency, or 'carbon memory', of guard cells that affects stomatal dynamics, photosynthesis and water-use efficiency.


Adaptation, Ocular/physiology , Arabidopsis Proteins/metabolism , Carbon Dioxide/metabolism , Photosynthesis/physiology , Plant Stomata/physiology , Potassium Channels/physiology , Water/metabolism
5.
Plant Cell Environ ; 42(8): 2399-2410, 2019 08.
Article En | MEDLINE | ID: mdl-31032976

Models of guard cell dynamics, built on the OnGuard platform, have provided quantitative insights into stomatal function, demonstrating substantial predictive power. However, the kinetics of stomatal opening predicted by OnGuard models were threefold to fivefold slower than observed in vivo. No manipulations of parameters within physiological ranges yielded model kinetics substantially closer to these data, thus highlighting a missing component in model construction. One well-documented process influencing stomata is the constraining effect of the surrounding epidermal cells on guard cell volume and stomatal aperture. Here, we introduce a mechanism to describe this effect in OnGuard2 constructed around solute release and a decline in turgor of the surrounding cells and its subsequent recovery during stomatal opening. The results show that this constraint-relaxation-recovery mechanism in OnGuard2 yields dynamics that are consistent with experimental observations in wild-type Arabidopsis, and it predicts the altered opening kinetics of ost2 H+ -ATPase and slac1 Cl- channel mutants. Thus, incorporating solute flux of the surrounding cells implicitly through their constraint on guard cell expansion provides a satisfactory representation of stomatal kinetics, and it predicts a substantial and dynamic role for solute flux across the apoplastic space between the guard cells and surrounding cells in accelerating stomatal kinetics.


Arabidopsis/cytology , Plant Stomata/physiology , Arabidopsis/physiology , Biomechanical Phenomena , Models, Biological , Plant Leaves/cytology , Plant Leaves/physiology , Plant Stomata/metabolism , Plant Transpiration
6.
J Agric Food Chem ; 66(4): 753-764, 2018 Jan 31.
Article En | MEDLINE | ID: mdl-29297687

Anthocyanins are water-soluble vacuolar plant pigments that are mainly synthesized in epidermal layers and the flesh of fruits such as apples, cherries, grapes, and other berries. Because of their attractive red to purple coloration and their health-promoting potential, anthocyanins are significant determinants for the quality and market value of fruits and fruit-derived products. In crops, anthocyanin accumulation in leaves can be caused by nutrient deficiency which is usually ascribed to insufficient nitrogen or phosphorus fertilization. However, it is a little-known fact that the plant's nutrient status also impacts anthocyanin synthesis in fruits. Hence, strategic nutrient supply can be a powerful tool to modify the anthocyanin content and consequently the quality and market value of important agricultural commodities. Here we summarize the current knowledge of the influence of plant nutrients on anthocyanin synthesis in fruits of major global market value and discuss the underlying cellular processes that integrate nutrient signaling with fruit anthocyanin formation. It is highlighted that fertilization that is finely tuned in amount and timing has the potential to positively influence the fruit quality by regulating anthocyanin levels. We outline new approaches to enrich plant based foods with health-promoting anthocyanins.


Agriculture/methods , Anthocyanins/biosynthesis , Crops, Agricultural/growth & development , Fertilizers , Fruit/metabolism , Anthocyanins/analysis , Crops, Agricultural/physiology , Fragaria/chemistry , Fruit/chemistry , Fruit/growth & development , Health Promotion , Humans , Malus/chemistry , Plant Leaves/metabolism , Vitis/chemistry
7.
Plant Physiol ; 174(2): 487-519, 2017 Jun.
Article En | MEDLINE | ID: mdl-28408539

Stomatal guard cells are widely recognized as the premier plant cell model for membrane transport, signaling, and homeostasis. This recognition is rooted in half a century of research into ion transport across the plasma and vacuolar membranes of guard cells that drive stomatal movements and the signaling mechanisms that regulate them. Stomatal guard cells surround pores in the epidermis of plant leaves, controlling the aperture of the pore to balance CO2 entry into the leaf for photosynthesis with water loss via transpiration. The position of guard cells in the epidermis is ideally suited for cellular and subcellular research, and their sensitivity to endogenous signals and environmental stimuli makes them a primary target for physiological studies. Stomata underpin the challenges of water availability and crop production that are expected to unfold over the next 20 to 30 years. A quantitative understanding of how ion transport is integrated and controlled is key to meeting these challenges and to engineering guard cells for improved water use efficiency and agricultural yields.


Plant Cells/metabolism , Plant Stomata/physiology , Biological Transport , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , Phosphorylation , Plant Leaves/metabolism , Plant Stomata/cytology , Water/metabolism
8.
Planta ; 242(6): 1309-19, 2015 Dec.
Article En | MEDLINE | ID: mdl-26202737

MAIN CONCLUSION: The total capacity of the GS-mediated ligation of free ammonium and glutamate to form glutamine in the leaves of maize plants is not impaired upon severe magnesium starvation. Magnesium deficiency does not obligatorily lead to the decreased total protein concentrations in the leaves. Magnesium (Mg) is an integral component of the enzyme glutamine synthetase (GS), having both a structural and a catalytic role. Moreover, Mg is relevant for the post-translational regulation of the GS. Glutamine synthetase is one of the key enzymes in nitrogen assimilation, ligating-free ammonium (NH4 (+)) to glutamate to form glutamine and it is therefore crucial for plant growth and productivity. This study was conducted in order to test whether a severe Mg-deficiency impairs the total capacity of the GS-catalyzed synthesis of glutamine in maize leaves. Maize was grown hydroponically and the GS activity was analyzed dependent on different leaf developmental stages. Glutamine synthetase activity in vitro assays in combination with immune-dot blot analysis revealed that both the total activity and the abundance of glutamine synthetase was not impaired in the leaves of maize plants upon 54 days of severe Mg starvation. Additionally, it was shown that Mg deficiency does not obligatorily lead to decreased total protein concentrations in the leaves, as assayed by Bradford protein quantification. Moreover, Mg resupply to the roots or the leaves of Mg-deficient plants reversed the Mg-deficiency-induced accumulation of free amino acids in older leaves, which indicates impaired phloem loading. The results of our study reveal that the total GS-mediated primary or secondary assimilation of free NH4 (+) is not a limiting enzymatic reaction under Mg deficiency and thus cannot be accountable for the observed restriction of plant growth and productivity in Mg-deficient maize.


Glutamate-Ammonia Ligase/metabolism , Magnesium/metabolism , Plant Leaves/enzymology , Zea mays/enzymology , Gene Expression Regulation, Plant
9.
Plant Physiol Biochem ; 92: 19-29, 2015 Jul.
Article En | MEDLINE | ID: mdl-25900421

Salt stress impairs global agricultural crop production by reducing vegetative growth and yield. Despite this importance, a number of gaps exist in our knowledge about very early metabolic responses that ensue minutes after plants experience salt stress. Surprisingly, this early phase remains almost as a black box. Therefore, systematic studies focussing on very early plant physiological responses to salt stress (in this case NaCl) may enhance our understanding on strategies to develop crop plants with a better performance under saline conditions. In the present study, hydroponically grown Vicia faba L. plants were exposed to 90 min of NaCl stress, whereby every 15 min samples were taken for analyzing short-term physiologic responses. Gas chromatography-mass spectrometry-based metabolite profiles were analysed by calculating a principal component analysis followed by multiple contrast tests. Follow-up experiments were run to analyze downstream effects of the metabolic changes on the physiological level. The novelty of this study is the demonstration of complex stress-induced metabolic changes at the very beginning of a moderate salt stress in V. faba, information that are very scant for this early stage. This study reports for the first that the proline analogue trans-4-hydroxy-L-proline, known to inhibit cell elongation, was increasingly synthesized after NaCl-stress initiation. Leaf metabolites associated with the generation or scavenging of reactive oxygen species (ROS) were affected in leaves that showed a synchronized increase in ROS formation. A reduced glutamine synthetase activity indicated that disturbances in the nitrogen assimilation occur earlier than it was previously thought under salt stress.


Nitrogen/metabolism , Proline/biosynthesis , Reactive Oxygen Species/metabolism , Salt Tolerance , Sodium Chloride/metabolism , Stress, Physiological , Vicia faba/metabolism , Gas Chromatography-Mass Spectrometry , Glutamine/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Proline/analogs & derivatives
10.
Front Plant Sci ; 5: 781, 2014.
Article En | MEDLINE | ID: mdl-25620973

The major plant nutrient magnesium (Mg) is involved in numerous physiological processes and its deficiency can severely reduce the yield and quality of crops. Since Mg availability in soil and uptake into the plant is often limited by unfavorable soil or climatic conditions, application of Mg onto leaves, the site with highest physiological Mg demand, might be a reasonable alternative fertilization strategy. This study aimed to investigate, if MgSO4 leaf-application in practically relevant amounts can efficiently alleviate the effects of Mg starvation in maize, namely reduced photosynthesis capacity, disturbed ion homeostasis and growth depression. Results clearly demonstrated that Mg deficiency could be mitigated by MgSO4 leaf-application as efficiently as by resupply of MgSO4 via the roots in vegetative maize plants. Significant increases in SPAD values and net rate of CO2-assimilation as well as enhanced shoot biomass have been achieved. Ion analysis furthermore revealed an improvement of the nutrient status of Mg-deficient plants with regard to [Mg], [K], and [Mn] in distinct organs, thereby reducing the risk of Mn-toxicity at the rootside, which often occurs together with Mg deficiency on acid soils. In conclusion, foliar fertilization with Mg proved to be an efficient strategy to adequately supply maize plants with Mg and might hence be of practical relevance to correct nutrient deficiencies during the growing season.

...