Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Rep ; 13(1): 16333, 2023 09 28.
Article En | MEDLINE | ID: mdl-37770496

Lung adenocarcinoma (LUAD) is the most common malignant subtype of lung cancer (LC). miR-200 family is one of the prime miR regulators of epithelial-mesenchymal transition (EMT) and worst overall survival (OS) in LC patients. The study aimed to identify and validate the key differentially expressed immune-related genes (DEIRGs) regulated by miR-200 family which may serve for therapeutic aspects in LUAD tumor microenvironment (TME) by affecting cancer progression, invasion, and metastasis. The study identified differentially expressed miRNAs (DEMs) in LUAD, consisting of hsa-miR-200a-3p and hsa-miR-141-5p, respectively. Two highest-degree subnetwork motifs identified from 3-node miRNA FFL were: (i) miR-200a-3p-CX3CR1-SPIB and (ii) miR-141-5p-CXCR1-TBX21. TIMER analysis showed that the expression levels of CX3CR1 and CXCR1 were significantly positively correlated with infiltrating levels of M0-M2 macrophages and natural killer T (NKT) cells. The OS of LUAD patients was significantly affected by lower expression levels of hsa-miR-200a-3p, CX3CR1 and SPIB. These DEIRGs were validated using the human protein atlas (HPA) web server. Further, we validated the regulatory role of hsa-miR-200a-3p in an in-vitro indirect co-culture model using conditioned media from M0, M1 and M2 polarized macrophages (THP-1) and LUAD cell lines (A549 and H1299 cells). The results pointed out the essential role of hsa-miR-200a-3p regulated CX3CL1 and CX3CR1 expression in progression of LC TME. Thus, the study augments a comprehensive understanding and new strategies for LUAD treatment where miR-200 family regulated immune-related genes, especially chemokine receptors, which regulate the metastasis and invasion of LUAD, leading to the worst associated OS.


Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , MicroRNAs , Humans , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Adenocarcinoma of Lung/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Adenocarcinoma/genetics , Tumor Microenvironment/genetics , CX3C Chemokine Receptor 1/genetics
2.
Sci Rep ; 12(1): 11963, 2022 07 13.
Article En | MEDLINE | ID: mdl-35831411

Sepsis has affected millions of populations of all age groups, locations, and sexes worldwide. Immune systems, either innate or adaptive are dysregulated due to the infection. Various biomarkers are present to date, still sepsis is a primary cause of mortality. Globally, post-operative body infections can cause sepsis and septic shock in ICU. Abnormal antigen presentation to T-cells leads to a dysregulated immune system. miRNAs are sparkly evolved as biomarkers due to their high sensitivity and efficiency. In this work, we analyzed high-throughput mRNA data collected from Gene Expression Omnibus (GEO) and linked it to significant miRNAs and TFs using a network-based approach. Protein-protein interaction (PPI) network was constructed using sepsis-specific differentially expressed genes (DEGs) followed by enrichment analyses and hub module detection. Sepsis-linked decrease transcription of the classical HLA gene such as HLA-DPB1 and its interplay with miR-let-7b-5p and transcription factor SPIB was observed. This study helped to provide innovative targets for sepsis.


MicroRNAs/genetics , Sepsis , Biomarkers , Computational Biology , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Regulatory Networks , HLA-DP beta-Chains , Humans , MicroRNAs/metabolism , Sepsis/genetics , Transcription Factors/genetics , Transcriptome
3.
Gene ; 762: 145057, 2020 Dec 15.
Article En | MEDLINE | ID: mdl-32805314

COVID-19 is a lurking calamitous disease caused by an unusual virus, SARS-CoV-2, causing massive deaths worldwide. Nonetheless, explicit therapeutic drugs or clinically approved vaccines are not available for COVID-19. Thus, a comprehensive research is crucially needed to decode the pathogenic tools, plausible drug targets, committed to the development of efficient therapy. Host-pathogen interactions via host cellular components is an emerging field of research in this respect. miRNAs have been established as vital players in host-virus interactions. Moreover, viruses have the capability to manoeuvre the host miRNA networks according to their own obligations. Besides protein coding mRNAs, noncoding RNAs might also be targeted in infected cells and viruses can exploit the host miRNA network via ceRNA effect. We have predicted a ceRNA network involving one miRNA (miR-124-3p), one mRNA (Ddx58), one lncRNA (Gm26917) and two circRNAs (Ppp1r10, C330019G07RiK) in SARS-CoV infected cells. We have identified 4 DEGs-Isg15, Ddx58, Oasl1, Usp18 by analyzing a mRNA GEO dataset. There is no notable induction of IFNs and IFN-induced ACE2, significant receptor responsible for S-protein binding mediated viral entry. Pathway enrichment and GO analysis conceded the enrichment of pathways associated with interferon signalling and antiviral-mechanism by IFN-stimulated genes. Further, we have identified 3 noncoding RNAs, playing as potential ceRNAs to the genes associated with immune mechanisms. This integrative analysis has identified noncoding RNAs and their plausible targets, which could effectively enhance the understanding of molecular mechanisms associated with viral infection. However, validation of these targets is further corroborated to determine their therapeutic efficacy.


Coronavirus Infections/genetics , Gene Regulatory Networks , Host-Pathogen Interactions/genetics , Pneumonia, Viral/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Animals , Betacoronavirus , COVID-19 , Humans , Mice , MicroRNAs/genetics , Pandemics , Protein Interaction Mapping , RNA, Messenger/genetics , SARS-CoV-2
4.
Genes (Basel) ; 11(9)2020 08 20.
Article En | MEDLINE | ID: mdl-32825525

Acute respiratory distress syndrome (ARDS) is an outcome of an accelerated immune response that starts initially as a defensive measure, however, due to non-canonical signaling, it later proves to be fatal not only to the affected tissue but to the whole organ system. microRNAs are known for playing a decisive role in regulating the expression of genes involved in diverse functions such as lung development, repair, and inflammation. In-silico analyses of clinical data and microRNA databases predicted a probable interaction between miRNA-34a (miR-34a), mitogen-activated protein kinase 1 (ERK), and kruppel like factor 4 (Klf4). Parallel to in silico results, here, we show that intra-tracheal instillation of lipopolysaccharides (LPS) to mice enhanced miR-34a expression in lung macrophages. Inhibition of miR-34a significantly improved lung histology, whereas over-expression of miR-34a worsened the lung injury phenotype. miR-34a over-expression in macrophages were also demonstrated to favour pro-inflammatory M1 phenotype and inhibition of M2 polarization. In a quest to confirm this likely interaction, expression profiles of Klf4 as the putative target were analyzed in different macrophage polarizing conditions. Klf4 expression was found to be prominent in the miR-34a inhibitor-treated group but down-regulated in the miR-34a mimic treated group. Immuno-histopathological analyses of lung tissue from the mice treated with miR-34a inhibitor also showed reduced inflammatory M1 markers as well as enhanced cell proliferation. The present study indicates that miR-34a intensified LPS-induced lung injury and inflammation by regulating Klf4 and macrophage polarization, which may serve as a potential therapeutic target for acute lung injury/ARDS.


Kruppel-Like Transcription Factors/metabolism , Lipopolysaccharides/toxicity , Lung Injury/prevention & control , Macrophages/drug effects , MicroRNAs/antagonists & inhibitors , Animals , Female , Gene Expression Regulation , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Lung Injury/chemically induced , Lung Injury/metabolism , Lung Injury/pathology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Signal Transduction
5.
Sci Rep ; 10(1): 13354, 2020 08 07.
Article En | MEDLINE | ID: mdl-32770056

Asthma is a multifarious disease affecting several million people around the world. It has a heterogeneous risk architecture inclusive of both genetic and environmental factors. This heterogeneity can be utilised to identify differentially expressed biomarkers of the disease, which may ultimately aid in the development of more localized and molecularly targeted therapies. In this respect, our study complies with meta-analysis of microarray datasets containing mRNA expression profiles of both asthmatic and control patients, to identify the critical Differentially Expressed Genes (DEGs) involved in the pathogenesis of asthma. We found a total of 30 DEGs out of which 13 were involved in the pathway and functional enrichment analysis. Moreover, 5 DEGs were identified as the hub genes by network centrality-based analysis. Most hub genes were involved in protease/antiprotease pathways. Also, 26 miRNAs and 20 TFs having an association with these hub genes were found to be intricated in a 3-node miRNA Feed-Forward Loop. Out of these, miR-34b and miR-449c were identified as the key miRNAs regulating the expression of SERPINB2 gene and SMAD4 transcription factor. Thus, our study is suggestive of certain miRNAs and unexplored pathways which may pave a way to unravel critical therapeutic targets in asthma.


Asthma/etiology , Gene Expression Profiling , MicroRNAs/metabolism , Asthma/genetics , Asthma/metabolism , Datasets as Topic , Gene Expression Profiling/methods , Humans , Oligonucleotide Array Sequence Analysis , Transcriptome
...