Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Nat Chem ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844635

Halogenated organic pollutants (HOPs) are causing a significant environmental and human health crisis due to their high levels of toxicity, persistence and bioaccumulation. Urgent action is required to develop effective approaches for the reduction and reuse of HOPs. Whereas current strategies focus primarily on the degradation of HOPs, repurposing them is an alternative approach, albeit a challenging task. Here we discover that alkyl bromide can act as a catalyst for the transfer of chlorine using alkyl chloride as the chlorine source. We demonstrate that this approach has a wide substrate scope, and we successfully apply it to reuse HOPs that include dichlorodiphenyltrichloroethane, hexabromocyclododecane, chlorinated paraffins, chloromethyl polystyrene and poly(vinyl chloride) (PVC). Moreover, we show that the synthesis of essential non-steroidal anti-inflammatory drugs can be achieved using PVC and hexabromocyclododecane, and we demonstrate that PVC waste can be used directly as a chlorinating agent. Overall, this methodology offers a promising strategy for repurposing HOPs.

2.
ACS Nano ; 18(18): 11560-11572, 2024 May 07.
Article En | MEDLINE | ID: mdl-38682810

Second near-infrared (NIR-II) carbon dots, with absorption or emission between 1000 and 1700 nm, are gaining increasing attention in the biomaterial field due to their distinctive properties, which include straightforward preparation processes, stable photophysical characteristics, excellent biocompatibility, and low cost. As a result, there is a growing focus on the controlled synthesis and modulation of the photochemical and photophysical properties of NIR-II carbon dots, with the aim to further expand their biomedical applications, a current research hotspot. This account aims to provide a comprehensive overview of the recent advancements in NIR-II carbon dots within the biomedical field. The review will cover the following topics: (i) the design, synthesis, and purification of NIR-II carbon dots, (ii) the surface modification strategies, and (iii) the biomedical applications, particularly in the domain of cancer theranostics. Additionally, this account addresses the challenges encountered by NIR-II carbon dots and will outline future directions in the realm of cancer theranostics. By exploring carbon-based NIR-II biomaterials, we can anticipate that this contribution will garner increased attention and contribute to the development of next-generation advanced functional carbon dots, thereby offering enhanced tools and strategies in the biomedical field.


Carbon , Infrared Rays , Quantum Dots , Carbon/chemistry , Quantum Dots/chemistry , Humans , Neoplasms/drug therapy , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Animals , Theranostic Nanomedicine
3.
Heliyon ; 10(7): e28165, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38560117

Objective: Bladder cancer is one of the most prominent malignancies affecting the urinary tract, characterized by a poor prognosis. Our previous research has underscored the pivotal role of m6A methylation in the progression of bladder cancer. Nevertheless, the precise relationship between N6-methyladenosine (m6A) regulation of long non-coding RNA (lncRNA) and bladder cancer remains elusive. Methods: This study harnessed sequencing data and clinical records from 408 bladder cancer patients in the TCGA database. Employing R software, we conducted bioinformatics analysis to establish an m6A-lncRNA co-expression network. Analyzing the differences between high and low-risk groups, particularly at the immunological level, and subsequently investigating the primary regulatory factors of these lncRNA, validating the findings through experiments, and exploring their specific cellular functions. Results: We identified 50 m6A-related lncRNA with prognostic significance through univariate Cox regression analysis. In parallel, we employed a LASSO-Cox regression model to pinpoint 11 lncRNA and calculate risk scores for bladder cancer patients. Based on the median risk score, patients were categorized into low-risk and high-risk groups. The high-risk cohort exhibited notably lower survival rates than their low-risk counterparts. Further analysis pointed to RBM15 and METTL3 as potential master regulators of these m6A-lncRNA. Experimental findings also shed light on the upregulated expression of METTlL3 and RBM15 in bladder cancer, where they contributed to the malignant progression of tumors. The experimental findings demonstrated a significant upregulation of METTL3 and RBM15 in bladder cancer specimens, implicating their contributory role in the oncogenic progression. Knockdown of METTL3 and RBM15 resulted in a marked attenuation of tumor cell proliferation, invasion, and migration, which was concomitant with a downregulation in the cellular m6A methylation status. Moreover, these results revealed that RBM15 and METTL3 function in a synergistic capacity, positing their involvement in cancer promotion via the upregulation of m6A modifications in long non-coding RNAs. Additionally, this study successfully developed an N-methyl-N-nitrosourea (MNU)-induced rat model of in situ bladder carcinoma, confirming the elevated expression of RBM15 and METTL3, which paralleled the overexpression of m6A-related- lncRNAs observed in bladder cancer cell lines. This congruence underscores the potential utility of these molecular markers in in vivo models that mirror human malignancies. Conclusion: This study not only offers novel molecular targets,but also enriches the research on m6A modification in bladder cancer, thereby facilitating its clinical translation.

4.
J Adv Res ; 56: 57-68, 2024 Feb.
Article En | MEDLINE | ID: mdl-37003532

INTRODUCTION: N6-methyladenosine (m6A) modification contributes to the pathogenesis and development of various cancers, including bladder cancer (BCa). In particular, integrin α6 (ITGA6) promotes BCa progression by cooperatively regulating multisite m6A modification. However, the therapeutic effect of targeting ITGA6 multisite m6A modifications in BCa remains unknown. OBJECTIVES: We aim to develop a multisite dCasRx- m6A editor for assessing the effects of the multisite dCasRx-m6A editor targeted m6A demethylation of ITGA6 mRNA in BC growth and progression. METHODS: The multisite dCasRx- m6A editor was generated by cloning. m6A-methylated RNA immunoprecipitation (meRIP), luciferase reporter, a single-base T3 ligase-based qPCR-amplification, Polysome profiling and meRIP-seq experiments were performed to determine the targeting specificity of the multisite dCasRx-m6A editor. We performed cell phenotype analysis and used in vivo mouse xenograft models to assess the effects of the multisite dCasRx-m6A editor in BC growth and progression. RESULTS: We designed a targeted ITGA6 multi-locus guide (g)RNA and established a bidirectional deactivated RfxCas13d (dCasRx)-based m6A-editing platform, comprising a nucleus-localized dCasRx fused with the catalytic domains of methyltransferase-like 3 (METTL3-CD) or α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5-CD), to simultaneously manipulate the methylation of ITGA6 mRNA at four m6A sites. The results confirmed the dCasRx-m6A editor modified m6A at multiple sites in ITGA6 mRNA, with low off-target effects. Moreover, targeted m6A demethylation of ITGA6 mRNA by the multisite dCasRx-m6A editor significantly reduced BCa cell proliferation and migration in vitro and in vivo. Furthermore, the dCasRx-ALKBH5-CD and ITGA6 multi-site gRNA delivered to 5-week-old BALB/cJNju-Foxn1nu/Nju nude mice via adeno-associated viral vectors significantly inhibited BCa cell growth. CONCLUSION: Our study proposes a novel therapeutic tool for the treatment of BC by applying the multisite dCasRx-m6A editor while highlighting its potential efficacy for treating other diseases associated with abnormal m6A modifications.


RNA, Guide, CRISPR-Cas Systems , Urinary Bladder Neoplasms , Humans , Mice , Animals , Integrin alpha6/genetics , Integrin alpha6/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Mice, Nude , Cell Line, Tumor , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Demethylation , Methyltransferases/genetics , Methyltransferases/metabolism
5.
Angew Chem Int Ed Engl ; 63(2): e202314304, 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38009446

Bridged benzazepine scaffolds, possessing unique structural and physicochemical activities, are widespread in various natural products and drugs. The construction of these skeletons often requires elaborate synthetic effort with low efficiency. Herein, we develop a simple and divergent approach for constructing various bridged benzazepines by a photocatalytic intermolecular dearomatization of naphthalene derivatives with readily available α-amino acids. The bridged motif is created via a cascade sequence involving photocatalytic 1,4-hydroaminoalkylation, alkene isomerization and cyclization. Interestingly, the diastereoselectivity can be regulated through different reaction modes in the cyclization step. Moreover, aminohydroxylation and its further bromination have also been demonstrated to access highly functionalized bridged benzazepines. Preliminary mechanistic studies have been performed to get insights into the mechanism. This method provides a divergent synthetic approach for construction of highly functionalized bridged benzazepines, which have been otherwise difficult to access.

6.
Angew Chem Int Ed Engl ; 63(6): e202317299, 2024 Feb 05.
Article En | MEDLINE | ID: mdl-38105386

The construction of multiple continuous fully substituted carbon centers, which serve as unique structural motif in natural products, is a challenging topic in organic synthesis. Herein, we report a hydrated [3+2] cyclotelomerization of butafulvenes to create contiguous fully substituted carbon backbone. In the presence of scandium triflate, all-carbon skeleton with spiro fused tricyclic ring can be constructed in high diastereoselectivity by utilizing butafulvene as the synthon. Mechanistic studies suggest that this atom-economic reaction probably proceeds through a synergistic process containing butafulvenes dimerization and nucleophilic attack by water. In addition, the tricyclic product can undergo a series of synthetic derivatizations, which highlights the potential applications of this strategy. The recyclability of Sc(OTf)3 has also been demonstrated to show its robust performance in this hydrated cyclotelomerization.

7.
Nat Commun ; 14(1): 7087, 2023 Nov 04.
Article En | MEDLINE | ID: mdl-37925506

As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.

8.
Chem Sci ; 14(40): 11170-11179, 2023 Oct 18.
Article En | MEDLINE | ID: mdl-37860665

A catalyst-free photosensitized strategy has been developed for regioselective imino functionalizations of alkenes via the formation of an EDA complex. This photo-induced protocol facilitates the construction of structurally diverse ß-imino sulfones and vinyl sulfones in moderate to high yields. Mechanistic studies reveal that the reaction is initiated with an intermolecular charge transfer between oximes and sulfinates, followed by fragmentation to generate a persistent iminyl radical and transient sulfonyl radical. This catalyst-free protocol also features excellent regioselectivity, broad functional group tolerance and mild reaction conditions. The late stage functionalization of natural product derived compounds and total synthesis of some bioactive molecules have been demonstrated to highlight the utility of this protocol. Meanwhile, the compatibility of different donors has proved the generality of this strategy.

9.
J Sleep Res ; : e14079, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37876325

Dexmedetomidine (DEX) has been described as a safe sedative in clinical practice, but its effects on the pathophysiological traits of obstructive sleep apnea (OSA) are unclear. We estimated the effects of DEX sedation on the four key pathophysiological traits of OSA (pharyngeal collapsibility, dilator muscle function, arousal threshold, and loop gain) in adult patients with OSA by conducting a secondary analysis of a prospective diagnostic trial. Pathophysiological traits estimated from polysomnography and the respiratory parameters under natural sleep and DEX-induced sleep were compared. Bivariate and multivariate linear regression analyses were used to estimate the relationship between pathophysiological traits and OSA severity for both sleep states. Adult patients with OSA had a significantly higher pharyngeal collapsibility (Vpassive : 44.9 [15.7 to 53.8] vs. 53.3 [34.2 to 66.3] %eupnea , p < 0.001), arousal threshold (178.5 [132.5 to 234.6] vs. 140.5 [123.2 to 192.3] %eupnea , p < 0.001), and loop gain (LG1: 0.74 ± 0.25 vs. 0.60 ± 0.17, p < 0.001; LGn: 0.52 ± 0.12 vs. 0.44 ± 0.08, p < 0.001) during DEX-induced sleep compared with natural sleep. There was no significant difference in dilator muscle function or PSG respiratory parameters between natural versus DEX-induced sleep states. Bivariate regression analysis showed varying degrees of correlation between OSA traits and severity. Multiple regression analysis indicated that collapsibility was the strongest predictor of the apnea-hypopnea index for both sleep states. Dexmedetomidine sedation in patients with OSA increased the pharyngeal collapsibility without impairing dilator muscle function, while elevating arousal threshold and increasing loop gain.

10.
J Transl Med ; 21(1): 688, 2023 10 03.
Article En | MEDLINE | ID: mdl-37789452

BACKGROUND: Systemic administration of oncolytic adenovirus for cancer therapy is still a challenge. Mesenchymal stem cells as cell carriers have gained increasing attention in drug delivery due to their excellent tumor tropism, immunosuppressive modulatory effects, and paracrine effects. However, the potential of human dental pulp stem cells (hDPSCs) loaded with oncolytic adenovirus for cancer biotherapy has not been investigated yet. METHODS: The stemness of hDPSCs was characterized by FACS analysis and Alizarin red staining, Oil Red O staining, and immunofluorescence assays. The biological fitness of hDPSCs loaded with oncolytic adenovirus YSCH-01 was confirmed by virus infection with different dosages and cell viability CCK-8 assays. Additionally, the expression of CAR receptor in hDPSCs was detected by qPCR assay. Tumor tropism of hDPSC loaded with YSCH-01 in vitro and in vivo was investigated by Transwell assays and living tumor-bearing mice imaging technology and immunohistochemistry, Panoramic scanning of frozen section slices assay analysis. Furthermore, the antitumor efficacy was observed through the different routes of YSCH-01/hPDSCs administration in SW780 and SCC152 xenograft models. The direct tumor cell-killing effect of YSCH-01/hDPSCs in the co-culture system was studied, and the supernatant of YSCH-01/hDPSCs inhibited cell growth was further analyzed by CCK-8 assays. RESULTS: hDPSCs were found to be susceptible to infection by a novel oncolytic adenovirus named YSCH-01 and were capable of transporting this virus to tumor sites at 1000 VP/cell infectious dosage in vitro and in vivo. Moreover, it was discovered that intraperitoneal injection of hDPSCs loaded with oncolytic adenovirus YSCH-01 exhibited potential anti-tumor effects in both SW780 and SCC152 xenograft models. The crucial role played by the supernatant secretome derived from hDPSCs loaded with YSCH-01 significantly exerted a specific anti-tumor effect without toxicity for normal cells, in both an active oncolytic virus and an exogenous protein-independent manner. Furthermore, the use of hDPSCs as a cell carrier significantly reduced the required dosage of virus delivery in vivo compared to other methods. CONCLUSIONS: These findings highlight the promising clinical potential of hDPSCs as a novel cell carrier in the field of oncolytic virus-based anti-cancer therapy.


Mesenchymal Stem Cells , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Mice , Animals , Adenoviridae , Dental Pulp , Sincalide , Oncolytic Virotherapy/methods , Xenograft Model Antitumor Assays
11.
J Colloid Interface Sci ; 652(Pt B): 1170-1183, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37657217

Construction of ultra-stable, flexible, efficient and economical catalytic electrodes is of great significance for the seawater electrolysis for hydrogen production. This work is grounded in a one-step mild electroless plating method to construct industrial-grade super-stable overall water splitting (OWS) catalytic electrodes (Fe1-Ni1P@GF) by growing loose and porous spore-like Fe1-Ni1P conductive catalysts in situ on flexible glass fibre (GF) insulating substrates with precise elemental regulation. Cost-effective Fe regulation boosts the electronic conductivity and charge transfer ability to achieve the construction of high intrinsic activity and strong electron density electrodes. Fe1-Ni1P@GF exhibits remarkable catalytic performance in hydrogen and oxygen evolution reaction (HER and OER), providing current densities of 10 mA cm-2 for HER and 100 mA cm-2 for OER at overpotentials of 51 and 216 mV, respectively. Moreover, it achieves 10 mA cm-2 at 1.42 V for OWS, and exhibits stable operation for over 1440 h at 1000 mA cm-2 in quasi-industrial environment of 6.0 M KOH + 0.5 M NaCl, without any performance degradation. This strategy enables the preparation of universally applicable P-based electrodes (ternary, quaternary, etc.) and large-area flexible electrodes (paper or cotton), significantly expands the practicality of the electrodes and demonstrating promising potential for industrial applications.

12.
Cancer Biomark ; 38(3): 311-319, 2023.
Article En | MEDLINE | ID: mdl-37545221

BACKGROUD/AIMS: LINC00323 is a novel lncRNA which has reported to play an important role in the development and recurrence in several cancers. However, the expression and predictive value of LINC00323 in gastric cancer (GC) remain mysterious. METHODS: LINC00323 expression in GC tissues and adjacent normal tissues was evaluated by quantitative reverse-transcription PCR (qRT-PCR). The relationship between LINC00323 expression and clinicopathological features and patients' survival were analyzed. Univariate and multivariate survival analyses were performed. RESULTS: LINC00323 expression were found to be significantly increased in GC tissues. High expression of LINC00323 exerted a pro-tumor effect in the late stage of GC development. Kaplan-Meier analysis showed that patients with high LINC00323 were associated with poor overall survival (OS) and progression-free survival (PFS). Moreover, the combination of TNM stage and drinking status better identified GC patient outcome than those of TNM stage alone. CONCLUSIONS: Our data showed that LINC00323 overexpression might serve as a novel independent prognostic factor for survival of GC patients, suggesting LINC00323 was a potential biomarker and therapeutic target for GC.


Stomach Neoplasms , Humans , Kaplan-Meier Estimate , Multivariate Analysis , Polymerase Chain Reaction , Progression-Free Survival , Stomach Neoplasms/genetics , RNA, Untranslated/genetics
14.
Small ; 19(48): e2304258, 2023 Nov.
Article En | MEDLINE | ID: mdl-37525327

How to mildly structure a high intrinsic activity and stable catalytic electrode to realize long-term catalytic water splitting to produce hydrogen at a wide range of pH values at industrial high current is a challenge. Herein, this work creatively proposes to prepare industrial-grade catalytic electrodes with high efficiency and stability at high current density through carbon quantum dots (CDs) modification nickel sulfide on hydrophilic flexible filter paper via one-step mild chemical plating (denoted as CDs-Ni3 S2 @HFP). The intrinsic activity and surface area, electron transfer ability, and corrosion resistance of Ni3 S2 material are increased due to the regulation, homogenous, and high concentration doping of CDs. The overpotential of the flexible catalytic electrode is only 30, 35, and 87 mV in 1 m KOH, simulated seawater (1 m KOH + 0.5 m NaCl), and neutral electrolyte (0.5 m PBS) at a current density of 10 mA cm-2 . More attractively, the CDs-Ni3 S2 @HFP electrode achieves over 500 h of efficient and stable catalysis at industrial high current density (500 mA cm-2 ). Due to the advantages of mild, universal, and large-area preparation of catalytic materials, this work provides technical support for flexible catalytic electrodes in efficient catalysis toward water splitting, energy storage, and device preparation.

15.
Cancer Lett ; 566: 216246, 2023 07 10.
Article En | MEDLINE | ID: mdl-37268280

RNA modifications, including adenine methylation (m6A) of mRNA and guanine methylation (m7G) of tRNA, are crucial for the biological function of RNA. However, the mechanism underlying the translation of specific genes synergistically mediated by dual m6A/m7G RNA modifications in bladder cancer (BCa) remains unclear. We demonstrated that m6A methyltransferase METTL3-mediated programmable m6A modification of oncogene trophoblast cell surface protein 2 (TROP2) mRNA promoted its translation during malignant transformation of bladder epithelial cells. m7G methyltransferase METTL1 enhanced TROP2 translation by mediating m7G modification of certain tRNAs. TROP2 protein inhibition decreased the proliferation and invasion of BCa cells in vitro and in vivo. Moreover, synergistical knockout of METTL3/METTL1 inhibited BCa cell proliferation, migration, and invasion; however, TROP2 overexpression partially abrogated its effect. Furthermore, TROP2 expression was significantly positively correlated with the expression levels of METTL3 and METTL1 in BCa patients. Overall, our results revealed that METTL3/METTL1-mediated dual m6A/m7G RNA modifications enhanced TROP2 translation and promoted BCa development, indicating a novel RNA epigenetic mechanism in BCa.


Antigens, Neoplasm , Cell Adhesion Molecules , Urinary Bladder Neoplasms , Humans , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Urinary Bladder Neoplasms/pathology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism
16.
Front Genet ; 14: 1136240, 2023.
Article En | MEDLINE | ID: mdl-37065473

As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc-, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.

17.
Pharmaceutics ; 15(3)2023 Feb 24.
Article En | MEDLINE | ID: mdl-36986621

Photodynamic therapy (PDT) is a treatment that employs exogenously produced reactive oxygen species (ROS) to kill cancer cells. ROS are generated from the interaction of excited-state photosensitizers (PSs) or photosensitizing agents with molecular oxygen. Novel PSs with high ROS generation efficiency is essential and highly required for cancer photodynamic therapy. Carbon dots (CDs), the rising star of carbon-based nanomaterial family, have shown great potential in cancer PDT benefiting from their excellent photoactivity, luminescence properties, low price, and biocompatibility. In recent years, photoactive near-infrared CDs (PNCDs) have attracted increasing interest in this field due to their deep therapeutic tissue penetration, superior imaging performance, excellent photoactivity, and photostability. In this review, we review recent progress in the designs, fabrication, and applications of PNCDs in cancer PDT. We also provide insights of future directions in accelerating the clinical progress of PNCDs.

18.
Org Lett ; 25(11): 1878-1882, 2023 Mar 24.
Article En | MEDLINE | ID: mdl-36916741

The formation of one unavoidable byproduct in traditional disproportionation reactions limits their applications in synthesis. Inspired by convergent disproportionation, we develop an iodine-induced cyclization and oxidation of allylic alcohols to produce highly functionalized bicyclo[3.2.1]octanes through creation of six new bonds. Guided by the mechanism, we elaborated a variety of other bicyclo[3.2.1]octanes bearing distinct groups with presynthesized dienes and enones as the starting materials. This work provides a divergent access to bicyclo[3.2.1]octane frameworks.

19.
Ecotoxicol Environ Saf ; 254: 114755, 2023 Apr 01.
Article En | MEDLINE | ID: mdl-36917877

It has been reported that particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) could induce epithelial-mesenchymal transition (EMT)- and extracellular matrix (ECM)-related pulmonary fibrosis (PF). The transcription factor Nrf2 alleviated PM2.5-induced PF by antagonizing oxidative stress. The N6-methyladenosine (m6A) modification plays a significant role in the stress response. However, the effect of m6A modification on the mechanisms of Nrf2-mediated defense against PM2.5-induced PF remained unknown. Here, we explored the role and the underlying molecular mechanisms of m6A methylation of Nrf2 mRNA in PM2.5-induced PF. We established filtered air (FA), unfiltered air (UA), and concentrated PM2.5 air (CA) group mice model and 0, 50, and 100 µg/mL PM2.5-treated 16HBE cell models. The extent of lung fibrosis in mice and fibrosis indicators were detected by histopathological analysis, immunohistochemical staining and western blotting. The molecular mechanism of m6A-modified Nrf2 was demonstrated by m6A-methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), qRT-PCR and T3 ligase-based PCR. Our data showed that PM2.5 exposure for 16 weeks could induce pulmonary fibrosis and activate Nrf2 signaling pathway. m6A methyltransferase METTL3 was upregulated after PM2.5 treatment in vivo and in vitro. Moreover, METTL3 mediated m6A modification of Nrf2 mRNA and promoted Nrf2 translation in mice and 16HBE cells after PM2.5 exposure. Mechanistically, three m6A-modified sites (1317, 1376 and 935; numbered relative to the first nucleotide of 3'UTR) of Nrf2 mRNA were identified in PM2.5-treatment 16HBE cells. Furthermore, the m6A binding proteins YTHDF1/IGF2BP1 promoted Nrf2 translation by binding to m6A residues of Nrf2 mRNA. Our results revealed the mechanism of m6A mediated Nrf2 signaling pathway against oxidative stress, which affected the development of PM2.5-induced PF.


Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Particulate Matter/toxicity , RNA , RNA, Messenger/genetics
20.
Nat Commun ; 14(1): 651, 2023 Feb 06.
Article En | MEDLINE | ID: mdl-36746964

Developing efficient strategies to realize divergent arylation of dienes has been a long-standing synthetic challenge. Herein, a nickel catalyzed divergent Mizoroki-Heck reaction of 1,3-dienes has been demonstrated through the regulation of ligands and additives. In the presence of Mn/NEt3, the Mizoroki-Heck reaction of dienes delivers linear products under Ni(dppe)Cl2 catalysis in high regio- and stereoselectivities. With the help of catalytic amount of organoboron and NaF, the use of bulky ligand IPr diverts the selectivity from linear products to branched products. Highly aryl-substituted compounds can be transformed from dispersive Mizoroki-Heck products programmatically. Preliminary experimental studies are carried out to elucidate the role of additives.

...