Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Brain Sci ; 13(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38137133

RESUMEN

We developed an end-effector-type rehabilitation robot that can uses electro- and permanent magnets to generate a three-way magnetic field to assist hand movements and perform rehabilitation therapy. This study aimed to investigate the therapeutic effect of a rehabilitation program using a three-dimensional (3D) magnetic force-based hand rehabilitation robot on the motor function recovery of the paralyzed hands of patients with stroke. This was a double-blind randomized controlled trial in which 36 patients with subacute stroke were assigned to intervention and control groups of 18 patients each. The intervention group received 30 min of rehabilitation therapy per day for a month using a 3D magnetic force-driven hand rehabilitation robot, whereas the control group received 30 min of conventional occupational therapy to restore upper-limb function. The patients underwent three behavioral assessments at three time points: before starting treatment (T0), after 1 month of treatment (T1), and at the follow-up 1-month after treatment completion (T2). The primary outcome measure was the Wolf Motor Function Test (WMFT), and secondary outcome measures included the Fugl-Meyer Assessment of the Upper Limb (FMA_U), Modified Barthel Index (MBI), and European Quality of Life Five Dimensions (EQ-5D) questionnaire. No participant safety issues were reported during the intervention. Analysis using repeated measures analysis of variance showed significant interaction effects between time and group for both the WMFT score (p = 0.012) and time (p = 0.010). In post hoc analysis, the WMFT scores and time improved significantly more in the patients who received robotic rehabilitation at T1 than in the controls (p = 0.018 and p = 0.012). At T2, we also consistently found improvements in both the WMFT scores and times for the intervention group that were superior to those in the control group (p = 0.024 and p = 0.018, respectively). Similar results were observed for FMA_U, MBI, and EQ-5D. Rehabilitation using the 3D hand-rehabilitation robot effectively restored hand function in the patients with subacute stroke, contributing to improvement in daily independence and quality of life.

2.
Materials (Basel) ; 15(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234114

RESUMEN

Several studies have been reported on self-healing concrete using bacteria, admixtures, and microcapsules. Among these self-healing techniques, encapsulating cement-based materials is advantageous in that large amounts of self-healing material can be contained in a capsule and released at the cracked site for a targeted reaction. This study produced a powder compacted capsule (PCC) using the droplet and blended manufacturing methods to encapsulate cementitious materials. This study refers to the PCCs as droplet-PCC (D-PCC) and blended-PCC (B-PCC) according to the manufacturing method used. The fluidity, compressive strength, carbonation, drying shrinkage, and water permeability of cement mortar with PCCs were evaluated. The test results show that the flow of the mortar sample using D-PCC was slightly higher than that of the mortar using B-PCC. The compressive strength of the mortar sample with B-PCC was generally higher than that of the mortar sample with D-PCC. The compressive strength of the B-PCC2 sample (with 0.2% of B-PCC) was the highest at all curing ages. This may be because the B-PCC fracture load was higher than that of the D-PCC. In addition, more hydrates were observed in the B-PCC sample than in the D-PCC sample. A crack healing effect was observed in the samples with PCC, regardless of the PCC type. The effect was the greatest in the B-PCC6 sample (with 0.6% of B-PCC). The results of this study provide a reference for the PCC type and mix ratio that would yield the best mechanical properties and crack healing effect.

3.
Brain Sci ; 12(1)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35053855

RESUMEN

We developed a magnetic-force-based three-dimensional (3D) rehabilitation device that can perform motor rehabilitation treatment for paralyzed fingers, regardless of upper extremity movement and position, and investigated the therapeutic effects of the device. An end-effector type rehabilitation device that can generate magnetic fields in three directions was developed using electromagnets and permanent magnetics. A double-blinded randomized controlled pilot study was conducted with a total of 12 patients. The intervention group had rehabilitation treatment using the developed magnetic finger rehabilitation device for 30 min a day for four weeks. The control group underwent exercise rehabilitation treatment. The control group received conventional occupational therapy on the upper limbs, including hands, from an occupational therapist, for the same amount of time. Adverse effects were monitored, and the patient's sensory or proprioceptive deficits were examined before the intervention. No participants reported safety concerns while the intervention was conducted. The Wolf Motor Function Test (WMFT) scores were significantly improved in the intervention group (from 13.4 ± 3.6 to 20.9 ± 4.0 points) compared to the control group (from 13.1 ± 4.0 to 15.2 ± 3.8 points) (p = 0.016). The patients in the intervention group (from 88 ± 12 to 67 ± 13 s) showed greater improvement of WMFT times compared to the control group (from 89 ± 10 to 73 ± 11 s) (p = 0.042). The Manual Function Test and the upper limb score of the Fugl-Meyer Assessment were significantly improved in the intervention group compared with the control group (p = 0.038 and p = 0.042). The patients in the intervention group also showed significantly greater enhancement of the Korean version of the modified Barthel Index than the control group (p = 0.042). Rehabilitation treatment using the 3D magnetic-force-driven finger rehabilitation device helped improve finger motor function and activities of daily living in subacute stroke patients.

4.
Sensors (Basel) ; 21(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34577427

RESUMEN

Pinching motions are important for holding and retaining objects with precision. Therefore, training exercises for the thumb and index finger are extremely important in the field of hand rehabilitation. Considering the need for training convenience, we developed a device and a driving system to assist pinching motions actively via a lightweight, simple, and wireless mechanism driven by the magnetic forces and torques generated by magnets attached to the tip of these two fingers. This device provides accurate pinching motions through the linking structures connecting the two magnets. The fabricated device has minimal mechanical elements with an ultralightweight of 57.2 g. The magnetic field, the intensity of which is based on the time variant, generates a pinching motion between the thumb and index finger, thus rendering it possible to achieve repetitive training. To verify the generation of an active pinching motion, we fabricated a finger model using a 3D printer and a rubber sheet and observed the active motions generated by the newly developed device. We also verified the performance of the proposed mechanism and driving method via various experiments and magnetic simulations. The proposed mechanism represents an important breakthrough for patients requiring hand rehabilitation and wearable assistive motion devices.


Asunto(s)
Dedos , Mano , Fenómenos Biomecánicos , Humanos , Movimiento , Pulgar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...