Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
BMC Plant Biol ; 24(1): 857, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39266955

RESUMEN

BACKGROUND: Reed canary grass has been identified as a suitable species for restoring plateau wetlands and understanding plant adaptation mechanisms in wetland environments. In this study, we subjected a reed canary grass cultivar 'Chuanxi' to waterlogging, salt, and combined stresses to investigate its phenotypic characteristics, physiological indices, and transcriptome changes under these conditions. RESULTS: The results revealed that the growth rate was slower under salt stress than under waterlogging stress. The chlorophyll content and energy capture efficiency of the PS II reaction center decreased with prolonged exposure to each stress. Conversely, while the activities of enzymes associated with respiratory metabolism, as well as MDA, PRO, Na+, and K+-ATPase, increased. The formation of distinct aerenchyma was observed under waterlogging stress and combined stress. Transcriptome sequencing analysis identified 5,379, 4,169, and 14,993 DEGs under CK vs. W, CK vs. S, and CK vs. SW conditions, respectively. The WRKY was found to be the most abundant under waterlogging stress, whereas the MYB predominated under salt stress and combined stress. Glutathione metabolic pathways and Plant hormone signal transduction have also been found to play important roles in stress. CONCLUSION: By integrating phenotypic, physiological, anatomical, and transcriptomic, this research provides valuable insights into how reed canary grass responds to salt, waterlogging, and combined stresses. These findings may inform the ecological application of reed canary grass in high-altitude wetlands and for breeding purposes.


Asunto(s)
Perfilación de la Expresión Génica , Estrés Salino , Estrés Salino/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Phalaris/genética , Phalaris/metabolismo , Phalaris/fisiología , Humedales , Poaceae/genética , Poaceae/fisiología , Poaceae/metabolismo
2.
Microb Pathog ; 195: 106898, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39208956

RESUMEN

Helicobacter pylori infection has been thought to be associated with liver diseases, although the exact mechanisms remain elusive. This study identified H. pylori-induced liver inflammation and tissue damage in infected mice and examined the exosome-mediated mechanism underlying H. pylori infection's impact on liver injury. Exosomes were isolated from H. pylori-infected gastric epithelial GES-1 cells (Hp-GES-EVs), and the crucial virulence factor CagA was identified within these exosomes. Fluorescent labeling demonstrated that Hp-GES-EVs can be absorbed by liver cells. Treatment with Hp-GES-EVs enhanced the proliferation, migration, and invasion of Hep G2 and Hep 3B cells. Additionally, exposure to Hp-GES-EVs activated NF-κB and PI3K/AKT signaling pathways, which provides a reasonable explanation for the liver inflammation and neoplastic traits. Using a mouse model established via tail vein injection of Hp-GES-EVs, exosome-driven liver injury was evidenced by slight hepatocellular erosion around the central hepatic vein and elevated serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and IL-6. Administering the exosome inhibitor GW4869 via intraperitoneal injection in mice resulted in a reduction of liver damage caused by H. pylori infection. These findings illuminate the exosome-mediated pathogenesis of H. pylori-induced liver injury and offer valuable insights into the extra-gastrointestinal manifestations of H. pylori infection.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Modelos Animales de Enfermedad , Exosomas , Infecciones por Helicobacter , Helicobacter pylori , Hígado , Transducción de Señal , Exosomas/metabolismo , Animales , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/patogenicidad , Ratones , Humanos , Proteínas Bacterianas/metabolismo , Hígado/patología , Hígado/metabolismo , Hígado/microbiología , Antígenos Bacterianos/metabolismo , Compuestos de Bencilideno/farmacología , Compuestos de Anilina/farmacología , FN-kappa B/metabolismo , Células Hep G2 , Aspartato Aminotransferasas/sangre , Interleucina-6/metabolismo , Alanina Transaminasa/sangre , Proliferación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Movimiento Celular , Línea Celular , Masculino , Factores de Virulencia/metabolismo
3.
Virulence ; 15(1): 2375549, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38982595

RESUMEN

CagA is a significant oncogenic factor injected into host cells by Helicobacter pylori, which is divided into two subtypes: East Asian type (CagAE), characterized by the EPIYA-D motif, and western type (CagAW), harboring the EPIYA-C motif. CagAE has been reported to have higher carcinogenicity than CagAW, although the underlying reason is not fully understood. SHIP2 is an intracellular phosphatase that can be recruited by CagA to perturb the homeostasis of intracellular signaling pathways. In this study, we found that SHIP2 contributes to the higher oncogenicity of CagAE. Co-Immunoprecipitation and Pull-down assays showed that CagAE bind more SHIP2 than CagAW. Immunofluorescence staining showed that a higher amount of SHIP2 recruited by CagAE to the plasma membrane catalyzes the conversion of PI(3,4,5)P3 into PI(3,4)P2. This alteration causes higher activation of Akt signaling, which results in enhanced IL-8 secretion, migration, and invasion of the infected cells. SPR analysis showed that this stronger interaction between CagAE and SHIP2 stems from the higher affinity between the EPIYA-D motif of CagAE and the SH2 domain of SHIP2. Structural analysis revealed the crucial role of the Phe residue at the Y + 5 position in EPIYA-D. After mutating Phe of CagAE into Asp (the corresponding residue in the EPIYA-C motif) or Ala, the activation of downstream Akt signaling was reduced and the malignant transformation of infected cells was alleviated. These findings revealed that CagAE hijacks SHIP2 through its EPIYA-D motif to enhance its carcinogenicity, which provides a better understanding of the higher oncogenic risk of H. pylori CagAE.


Asunto(s)
Secuencias de Aminoácidos , Antígenos Bacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas , Humanos , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Carcinogénesis , Pueblos del Este de Asia , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/metabolismo , Unión Proteica , Transducción de Señal
4.
Angew Chem Int Ed Engl ; 63(32): e202407766, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38778504

RESUMEN

Inverted perovskite solar cells (PSCs) are preferred for tandem applications due to their superior compatibility with diverse bottom solar cells. However, the solution processing and low formation energy of perovskites inevitably lead to numerous defects at both the bulk and interfaces. We report a facile and effective strategy for precisely modulating the perovskite by incorporating AlOx deposited by atomic layer deposition (ALD) on the top interface. We find that Al3+ can not only infiltrate the bulk phase and interact with halide ions to suppress ion migration and phase separation but also regulate the arrangement of energy levels and passivate defects on the perovskite surface and grain boundaries. Additionally, ALD-AlOx exhibits an encapsulation effect through a dense interlayer. Consequently, the ALD-AlOx treatment can significantly improve the power conversion efficiency (PCE) to 21.80 % for 1.66 electron volt (eV) PSCs. A monolithic perovskite-silicon TSCs using AlOx-modified perovskite achieved a PCE of 28.5 % with excellent photothermal stability. More importantly, the resulting 1.55 eV PSC and module achieved a PCE of 25.08 % (0.04 cm2) and 21.01 % (aperture area of 15.5 cm2), respectively. Our study provides an effective way to efficient and stable wide-band gap perovskite for perovskite-silicon TSCs and paves the way for large-area inverted PSCs.

5.
Nanomicro Lett ; 16(1): 190, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698298

RESUMEN

A considerable efficiency gap exists between large-area perovskite solar modules and small-area perovskite solar cells. The control of forming uniform and large-area film and perovskite crystallization is still the main obstacle restricting the efficiency of PSMs. In this work, we adopted a solid-liquid two-step film formation technique, which involved the evaporation of a lead iodide film and blade coating of an organic ammonium halide solution to prepare perovskite films. This method possesses the advantages of integrating vapor deposition and solution methods, which could apply to substrates with different roughness and avoid using toxic solvents to achieve a more uniform, large-area perovskite film. Furthermore, modification of the NiOx/perovskite buried interface and introduction of Urea additives were utilized to reduce interface recombination and regulate perovskite crystallization. As a result, a large-area perovskite film possessing larger grains, fewer pinholes, and reduced defects could be achieved. The inverted PSM with an active area of 61.56 cm2 (10 × 10 cm2 substrate) achieved a champion power conversion efficiency of 20.56% and significantly improved stability. This method suggests an innovative approach to resolving the uniformity issue associated with large-area film fabrication.

6.
J Am Chem Soc ; 146(11): 7555-7564, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456423

RESUMEN

Constructing low-dimensional/three-dimensional (LD/3D) perovskite solar cells can improve efficiency and stability. However, the design and selection of LD perovskite capping materials are incredibly scarce for inverted perovskite solar cells (PSCs) because LD perovskite capping layers often favor hole extraction and impede electron extraction. Here, we develop a facile and effective strategy to modify the perovskite surface by passivating the surface defects and modulating surface electrical properties by incorporating morpholine hydriodide (MORI) and thiomorpholine hydriodide (SMORI) on the perovskite surface. Compared with the PI treatment that we previously developed, the one-dimensional (1D) perovskite capping layer derived from PI is transformed into a two-dimensional (2D) perovskite capping layer (with MORI or SMORI), achieving dimension regulation. It is shown that the 2D SMORI perovskite capping layer induces more robust surface passivation and stronger n-N homotype 2D/3D heterojunctions, achieving a p-i-n inverted solar cell with an efficiency of 24.55%, which retains 87.6% of its initial efficiency after 1500 h of operation at the maximum power point (MPP). Furthermore, 5 × 5 cm2 perovskite mini-modules are presented, achieving an active-area efficiency of 22.28%. In addition, the quantum well structure in the 2D perovskite capping layer increases the moisture resistance, suppresses ion migration, and improves PSCs' structural and environmental stability.

7.
Helicobacter ; 29(2): e13066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468575

RESUMEN

BACKGROUND: SHP1 has been documented as a tumor suppressor and it was thought to play an antagonistic role in the pathogenesis of Helicobacter pylori infection. In this study, the exact mechanism of this antagonistic action was studied. MATERIALS AND METHODS: AGS, MGC803, and GES-1 cells were infected with H. pylori, intracellular distribution changes of SHP1 were first detected by immunofluorescence. SHP1 overexpression and knockdown were then constructed in these cells to investigate its antagonistic roles in H. pylori infection. Migration and invasion of infected cells were detected by transwell assay, secretion of IL-8 was examined via ELISA, the cells with hummingbird-like alteration were determined by microexamination, and activation of JAK2/STAT3, PI3K/Akt, and ERK pathways were detected by immunoblotting. Mice infection model was established and gastric pathological changes were evaluated. Finally, the SHP1 activator sorafenib was used to analyze the attenuating effect of SHP1 activation on H. pylori pathogenesis in vitro and in vivo. RESULTS: The sub-localization of SHP1 changed after H. pylori infection, specifically that the majority of the cytoplasmic SHP1 was transferred to the cell membrane. SHP1 inhibited H. pylori-induced activation of JAK2/STAT3 pathway, PI3K/Akt pathway, nuclear translocation of NF-κB, and then reduced EMT, migration, invasion, and IL-8 secretion. In addition, SHP1 inhibited the formation of CagA-SHP2 complex by dephosphorylating phosphorylated CagA, reduced ERK phosphorylation and the formation of CagA-dependent hummingbird-like cells. In the mice infection model, gastric pathological changes were observed and increased IL-8 secretion, indicators of cell proliferation and EMT progression were also detected. By activating SHP1 with sorafenib, a significant curative effect against H. pylori infection was obtained in vitro and in vivo. CONCLUSIONS: SHP1 plays an antagonistic role in H. pylori pathogenesis by inhibiting JAK2/STAT3 and PI3K/Akt pathways, NF-κB nuclear translocation, and CagA phosphorylation, thereby reducing cell EMT, migration, invasion, IL-8 secretion, and hummingbird-like changes.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Animales , Ratones , Proteínas Bacterianas/metabolismo , Antígenos Bacterianos/metabolismo , Helicobacter pylori/fisiología , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Helicobacter/patología , Sorafenib/metabolismo , Células Epiteliales/metabolismo
8.
Adv Mater ; 35(39): e2303665, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37459560

RESUMEN

The buried interface in perovskite solar cells (PSCs) is pivotal for achieving high efficiency and stability. However, it is challenging to study and optimize the buried interface due to its non-exposed feature. Here, a facile and effective strategy is developed to modify the SnO2 /perovskite buried interface by passivating the buried defects in perovskite and modulating carrier dynamics via incorporating formamidine oxalate (FOA) in SnO2 nanoparticles. Both formamidinium and oxalate ions show a longitudinal gradient distribution in the SnO2 layer, mainly accumulating at the SnO2 /perovskite buried interface, which enables high-quality upper perovskite films, minimized defects, superior interface contacts, and matched energy levels between perovskite and SnO2 . Significantly, FOA can simultaneously reduce the oxygen vacancies and tin interstitial defects on the SnO2 surface and the FA+ /Pb2+ associated defects at the perovskite buried interface. Consequently, the FOA treatment significantly improves the efficiency of the PSCs from 22.40% to 25.05% and their storage- and photo-stability. This method provides an effective target therapy of buried interface in PSCs to achieve very high efficiency and stability.

9.
Small ; 19(41): e2302627, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287342

RESUMEN

The pursuit of efficient CO2 capture materials remains an unmet challenge. Especially, meeting both high sorption capacity and fast uptake kinetics is an ongoing effort in the development of CO2 sorbents. Here, a strategy to exploit liquid-in-aerogel porous composites (LIAPCs) that allow for highly effective CO2 capture and selective CO2 /N2 separation, is reported. Interestingly, the functional liquid tetraethylenepentamine (TEPA) is partially filled into the air pockets of SiO2 aerogel with left permanent porosity. Notably, the confined liquid thickness is 10.9-19.5 nm, which can be vividly probed by the atomic force microscope and rationalized by tailoring the liquid composition and amount. LIAPCs achieve high affinity between the functional liquid and solid porous counterpart, good structure integrity, and robust thermal stability. LIAPCs exhibit superb CO2 uptake capacity (5.44 mmol g-1 , 75 °C, and 15 vol% CO2 ), fast sorption kinetics, and high amine efficiency. Furthermore, LIAPCs ensure long-term adsorption-desorption cycle stability and offer exceptional CO2 /N2 selectivity both in dry and humid conditions, with a separation factor up to 1182.68 at a humidity of 1%. This approach offers the prospect of efficient CO2 capture and gas separation, shedding light on new possibilities to make the next-generation sorption materials for CO2 utilization.

10.
Macromol Rapid Commun ; 44(23): e2300213, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37230735

RESUMEN

The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.


Asunto(s)
Electrones , Semiconductores , Isomerismo
11.
Small ; 19(34): e2301534, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093554

RESUMEN

The super-white body might be defined as its reflectivity exceeding 98% at any angle in the visible light spectrum, which can be used in a variety of emerging fields including optics, energy, environment, aerospace, etc. However, elaborate synthesis of a light-weight, highly reflective super-white aerogel body remains a great challenge. In this work, fine-tuning of silica aerogel co-hydrolyzed precursor ratios, 99.7% reflectivity with angle-independence in the visible light spectrum has been successfully achieved when the areal density is only 0.129 g cm-2 , which breaks through the theoretical bandwidth limit of photonic crystals as well as the measured reflectivity limit of conventional porous materials. Furthermore, the reflectivity of super-white silica aerogel remains unchanged after various harsh deformations including compression and bending 1000 times, solar (≈800 W m-2 ), ultraviolet (≈0.68 W m-2 ), and humidity (100%) aging for 100 days, liquid nitrogen (-196 °C) and high-temperature (300 °C) thermal shock 100 times. As proofs of performance, the resulting super-white silica aerogels have been used as the novel standard white plate  for better spectrum calibration, as the flexible projector curtains for optical display, as well as the transmitted light reflective layer in the photovoltaic cell for improving the relative power conversion efficiency of 5.6%.

12.
World J Clin Cases ; 11(9): 2074-2083, 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36998945

RESUMEN

BACKGROUND: Infarction of the conus medullaris is a rare form of spinal cord infarction. The first symptom is usually acute non-characteristic lumbar pain, followed by lower limb pain, saddle numbness, fecal incontinence, and sexual dysfunction. Spontaneous conus infarction with "snake-eye appearance" on magnetic resonance imaging has rarely been reported. CASE SUMMARY: We report a 79-year-old male patient with spontaneous conus infarction who had acute lower extremity pain and dysuria as the first symptoms. He did not have any recent history of aortic surgery and trauma. Magnetic resonance imaging revealed a rare "snake-eye appearance." In addition, we reviewed the literature on 23 similar cases and summarized the clinical features and magnetic resonance manifestations of common diseases related to the "snake-eye sign" to explore the etiology, imaging findings, and prognosis of spontaneous conus infarction. CONCLUSION: We conclude that acute onset of conus medullaris syndrome combined with "snake-eye appearance" should be strongly suspected as conus medullaris infarction caused by anterior spinal artery ischemia. This special imaging manifestation is helpful in the early diagnosis and treatment of conus infarction.

13.
J Clin Lab Anal ; 37(2): e24840, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36604800

RESUMEN

BACKGROUND: Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebrovascular disease that is closely related to the NOTCH3 gene. Recurrent ischemic stroke, progressive cognitive dysfunction, and mental symptoms are the main clinical manifestations, whereas symptomatic intracranial hemorrhage is rare. METHODS: We detected a heterozygous mutation of c.1759C>T in exon 11 of the NOTCH3 gene that caused recurrent intracranial hemorrhage in CADASIL. RESULTS: Second-generation sequencing of a sample of the patient's genome revealed a heterozygous mutation of c.1759C>T in exon 11 of NOTCH3, which resulted in amino acid changes (p.R587C). This variation may be rated as a CADASIL clinical variation. CONCLUSION: The discovery of this mutation site provides an important theoretical basis for a gene-based diagnosis and treatment of recurrent intracranial hemorrhage.


Asunto(s)
CADASIL , Humanos , CADASIL/genética , Mutación , Receptor Notch3/genética , Exones , Hemorragias Intracraneales , Hemorragia , Imagen por Resonancia Magnética
14.
J Neurosurg Sci ; 67(4): 422-430, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33297605

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common and deadly glioma subtype. Early growth response 1 (EGR1) participates in the progression of several cancer types, but the expression and function of EGR1 in GBM was rarely investigated. METHODS: The expressions of EGR1 in GBM were detected with qRT-PCR and immunohistochemistry in 12 pairs of fresh GBM tissues and 116 paraffin-embedded specimens. The patients were divided into high and low EGR1 groups according to the IHC score of EGR1, and the prognostic significances of different groups were evaluated with univariate and multivariate analyses. With in-vitro experiments, we assessed the role of EGR1 in the proliferation and invasion of GBM cells. RESULTS: In our study, EGR1 was up-regulated in GBM tissues compared with tumor-adjacent normal tissues. High expression of EGR1 or HMGB1 were unfavorable prognostic biomarkers of GBM. Coexpression of EGR1 and HMGB1 could predict the prognosis of GBM more sensitively. EGR1 facilitated the proliferation and invasion of GBM cells. Moreover, EGR1 promoted the invasion, instead of proliferation, of GBM cells by elevating the expression of HMGB1. CONCLUSIONS: ERG1 was a prognostic biomarker of GBM, and ERG1 and HMGB1 synergistically could predict the GBM prognosis more precisely. ERG1 could promote GBM cell invasion by inducing HMGB1 expression.


Asunto(s)
Neoplasias Encefálicas , Proteína 1 de la Respuesta de Crecimiento Precoz , Glioblastoma , Proteína HMGB1 , Invasividad Neoplásica , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/fisiopatología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/fisiopatología , Perfilación de la Expresión Génica , Humanos , Análisis Multivariante , Proliferación Celular/genética , Invasividad Neoplásica/genética , Regulación hacia Arriba/genética , Línea Celular Tumoral , Masculino , Femenino , Persona de Mediana Edad , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Biomarcadores de Tumor/genética , Mutación
15.
ACS Appl Mater Interfaces ; 14(38): 43547-43557, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36112992

RESUMEN

Solution-processed hole contact materials, as an indispensable component in perovskite solar cells (PSCs), have been widely studied with consistent progress achieved. One bottleneck for the commercialization of PSCs is the lack of hole contact materials with high performance, cost-effective preparation, and green-solvent processability. Therefore, the development of versatile hole contact materials is of great significance. Herein, we report two novel donor-acceptor (D-A)-type hole contact molecules (FMPA-BT-CA and 2FMPA-BT-CA) with low cost and alcohol-based processability by utilizing a fluorination strategy. We showed that the fluorine atoms lead to the lowered highest occupied molecular orbital (HOMO) energy levels and larger dipole moments for FMPA-BT-CA and 2FMPA-BT-CA. Moreover, fluorination also improves the buried interfacial interaction between hole contacts and perovskite. As a result, a remarkable power conversion efficiency (PCE) of 22.37% along with good light stability could be achieved for green-solvent-processed FMPA-BT-CA-based inverted PSC devices, demonstrating the great potential of environmentally compatible hole contacts for highly efficient PSCs.

16.
Am J Transl Res ; 14(7): 4443-4456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958465

RESUMEN

OBJECTIVES: To explore the possible mechanism of human umbilical cord mesenchymal stem cell (hUC-MSC) transplantation in mice after spinal cord hemisection. METHODS: Thoracic spinal cord hemisection injuries were performed on adult female Kunming mice. The mice with spinal cord injury (SCI) were injected with hUC-MSCs suspended in normal saline, while the control mice received an equal volume of normal saline. The histological HE staining and Nissl staining were performed 4 and 8 weeks after hUC-MSC transplantation in SCI mice. The Basso-Beattie-Bresnahan (BBB) locomotor rating scale was used to assess functional recovery after SCI. Western blotting was performed to determine the protein expressions. RESULTS: hUC-MSCs transplantation decreased cavitation and tissue loss and increased the number of Nissl bodies in the damaged areas of the spinal cord after 4 and 8 weeks. The BBB locomotor performance of the transplanted mice was significantly improved (P<0.01). The wet weight of the injured side of the gastrocnemius muscle was significantly higher in the transplant group than that in the control group. Western blotting showed that TUJ1 and Olig2 expressions were significantly higher in hUC-MSC-grafted mice than those in vehicle controls. Three days after hUC-MSC transplantation, the expressions of TNF-α and NF-κB were higher in MSC-grafted mice than those in vehicle controls. However, 4 weeks after stem cell transplantation, the expressions of these two factors decreased in hUC-MSC-grafted mice compared with those in the vehicle controls. At 8 weeks after hUC-MSC transplantation, the expression of PTBP-1 was decreased in hUC-MSC-grafted mice compared with that in vehicle controls. CONCLUSIONS: hUC-MSC transplantation can protect neuron survival, promote myelin repair, and control glial scar formation in SCI mice.

17.
ACS Nano ; 16(8): 11902-11911, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35866886

RESUMEN

Charge carrier nonradiative recombination (NRR) caused by interface defects and nonoptimal energy level alignment is the primary factor restricting the performance improvement of perovskite solar cells (PSCs). Interfacial modification is a vital strategy to restrain NRR and enable high-performance PSCs. We report here two interfacial materials, PhI-TPA and BTZI-TPA, consisting of phthalimide and a 2,1,3-benzothiadiazole-5,6-dicarboxylicimide core, respectively. The difunctionalized BTZI-TPA with imide and thiadiazole shows higher hole mobility, better aligned energy levels, and stronger interaction with uncoordinated Pb2+ on the perovskite surface, suppressing NRR and carrier accumulation at the interface of perovskite/spiro-OMeTAD and yielding enhanced open-circuit voltage and fill factor. Consequently, the PSC based on BTZI-TPA delivers a high efficiency of 24.06% with an excellent fill factor of 83.10%, superior to that (21.47%) of the reference cell without an interfacial layer, and 21.45% efficiency for the device with a scaled-up area (1.00 cm2). These results underscore the potential of imide and thiadiazole groups in developing interfacial layers with strong passivation capability, effective charge transport property, and fine-tuned energetics for stable and efficient PSCs.

18.
J Clin Neurosci ; 100: 89-93, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35429794

RESUMEN

OBJECTIVE: Distant ischemic postconditioning (DIPC) has been confirmed to have a neuroprotective effect in animal models of ischemia. However, there are only a few studies on its efficacy and safety in clinical applications. METHOD: We divided 86 patients with acute non-cardiogenic mild to moderate cerebral infarction into DIPC and control groups. RESULT: After 7 days of using different pressure DIPC therapies, the National Institutes of Health Stroke Scale (NIHSS) scores on the eighth day significantly decreased, and modified Rankin scale significantly increased in the DIPC group, compared to that before treatment. On the eight day of admission, the decrease in the NIHSS scores significantly differed between the two groups. However, there was no change in the early neurological deterioration and platelet aggregation rates between the two groups on the eighth day. CONCLUSION: These results demonstrate that DIPC can safely and effectively improve neurological deficits in acute stages of mild to moderate cerebral infarction without affecting the efficacy of antiplatelet drugs.


Asunto(s)
Isquemia Encefálica , Poscondicionamiento Isquémico , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Isquemia Encefálica/tratamiento farmacológico , Infarto Cerebral/terapia , Humanos , Accidente Cerebrovascular/tratamiento farmacológico , Resultado del Tratamiento
19.
Curr Microbiol ; 79(4): 124, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258703

RESUMEN

A novel Gram-negative, motile, aerobic, spiral-shaped bacterium designated D5T, was isolated from a coastal sediment collected in the Yellow Sea. Optimal growth occurred at 30 °C, pH 7.0-8.0 and in the presence of 1-3% (w/v) NaCl. Strain D5T contained ubiquinone 8 (Q-8) as the predominant respiratory quinone. The major fatty acids (> 10%) were C16:0, C16:1 ω7c/C16:1 ω6c and C18:1w7c/C18:1w6c. The main polar lipids were phosphatidylglycerol and phosphatidylethanolamine. The draft genome is 5.6 Mb in length, and DNA G + C content is 47.2 mol%. 16S rRNA gene sequences showed that strain D5T is most closely related to Oceanospirillum beijerinckii NBRC 15445T (97.8%, sequence similarity). However, the digital DNA-DNA hybridization (dDDH) value and average nucleotide identity (ANI) between strain D5T and O. beijerinckii is only 27.8% and 77.1%. Phylogenetic trees based on 16S rRNA gene sequences and whole genomes all indicated that strain D5T formed a separate branch in the genus Oceanospirillum. Combined results of the polyphasic analyses suggested that strain D5T represents a novel species in the genus Oceanospirillum, for which the name Oceanospirillum sediminis sp. nov. is proposed. The type strain is D5T (= MCCC 1K06061T = KCTC 62987T).


Asunto(s)
Sedimentos Geológicos , Oceanospirillaceae , Filogenia , Agua de Mar , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , Oceanospirillaceae/clasificación , Oceanospirillaceae/aislamiento & purificación , Fosfolípidos/química , ARN Ribosómico 16S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Ubiquinona/química
20.
Adv Mater ; 34(6): e2107168, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34676931

RESUMEN

Silica aerogels with accurate building-block control are realized by adjusting the surfactant concentration during the synthesis process. The resulting silica-aerogel monolith with spherical building blocks of ≈24-40 nm, together with a deliberately created hole along the incident light direction, shows an incredibly promising application in monochromatic laser-driven lighting. The resulting coefficient of illuminance variation is as low as 8.1%, significantly outperforming commercially available ground-glass diffusers (139.0%) and polymer diffusers (249.1%); the speckle contrast is lower, as well as better, than that can be recognized by the human eye (4%), and the illuminance uniformity in the range of 0.770-0.862 is much better (higher) than that indoor workplace lighting required by the International Organization for Standardization. Lighting with any color in the visible spectrum, including white, can be obtained by using three primary color lasers (450, 532, and 638 nm) with different powers simultaneously as the light source. The resulting silica aerogel, which has excellent thermal stability, high laser-damage threshold, outstanding mechanical performance, and superhydrophobicity, can be further applied to long-distance and noncontact laser-driven lighting in rain or underwater without any additional encapsulation components.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA