Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Int Immunopharmacol ; 132: 111935, 2024 May 10.
Article En | MEDLINE | ID: mdl-38599096

Finding novel therapeutic modalities, improving drug delivery efficiency and targeting, and reducing the immune escape of tumor cells are currently hot topics in the field of tumor therapy. Bacterial therapeutics have proven highly effective in preventing tumor spread and recurrence, used alone or in combination with traditional therapies. In recent years, a growing number of researchers have significantly improved the targeting and penetration of bacteria by using genetic engineering technology, which has received widespread attention in the field of tumor therapy. In this paper, we provide an overview and assessment of the advancements made in the field of tumor therapy using genetically engineered bacteria. We cover three major aspects: the development of engineered bacteria, their integration with other therapeutic techniques, and the current state of clinical trials. Lastly, we discuss the limitations and challenges that are currently being faced in the utilization of engineered bacteria for tumor therapy.


Bacteria , Genetic Engineering , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Animals , Bacteria/genetics , Immunotherapy/methods , Drug Delivery Systems
2.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461906

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Hepatic Stellate Cells , Liver Diseases , Rats , Animals , Sevelamer/adverse effects , Antioxidants/pharmacology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/metabolism , Liver Diseases/metabolism , Transforming Growth Factor beta/metabolism , Phosphorus/metabolism , Phosphorus/pharmacology , Phosphorus/therapeutic use , Transforming Growth Factor beta1/metabolism
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2105-2120, 2024 Apr.
Article En | MEDLINE | ID: mdl-37782380

Bacoside A (gypenoside, Gyp) is a potent bioactive compound derived from Gynostemma pentaphyllum, known to exert inhibitory effects on various malignant tumors. However, the effects of Gyp on glioma as well as the underlying mechanisms remain unclear. In the present study, we first conducted a comprehensive investigation into the anti-glioma potential of gypenosides using network pharmacology to identify potential glioma-related targets. Protein-protein interaction networks were assembled, and GO and KEGG enrichment analyses were performed for shared targets. Experimental validation involved assessing the viability of U251 and U87 cell lines using the MTS method. Furthermore, trans-well and scratch migration assays evaluated the cell migration, while flow cytometry and Hoechst 33342 staining were utilized for apoptosis assessment. The study also monitored changes in autophagy flow through fluorescence microscopy. The expression levels of proteins pertinent to migration, apoptosis, and autophagy were tested using Western blotting. Findings revealed that Gyp upregulated apoptosis-related proteins (Bax and cleaved caspase-9), downregulated anti-apoptotic protein Bcl-2, and migration-associated matrix metalloproteinases (MMP-2 and MMP-9). Furthermore, autophagy-related proteins (Beclin1 and LC3 II) were upregulated, and p62 protein expression was downregulated. Gyp displayed considerable potential in suppressing glioma progression by inhibiting cell proliferation, invasion, and migration and promoting apoptosis and autophagy. Gyp may offer potential clinical therapeutic choices in glioma management.


Apoptosis , Glioma , Saponins , Triterpenes , Humans , Glioma/drug therapy , Glioma/pathology , Apoptosis Regulatory Proteins/metabolism , Cell Proliferation , Autophagy , Cell Line, Tumor
4.
Mini Rev Med Chem ; 2023 10 06.
Article En | MEDLINE | ID: mdl-37859309

Long noncoding RNAs (lncRNAs) represent a large subgroup of RNA transcripts that lack the function of coding proteins and may be essential universal genes involved in carcinogenesis and metastasis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNAMALAT1) is overexpressed in various human tumors, including gliomas. However, the biological function and molecular mechanism of action of lncRNA-MALAT1 in gliomas have not yet been systematically elucidated. Accumulating evidence suggests that the abnormal expression of lncRNA-MALAT1 in gliomas is associated with various physical properties of the glioma, such as tumor growth, metastasis, apoptosis, drug resistance, and prognosis. Furthermore, lncRNAs, as tumor progression and prognostic markers in gliomas, may affect tumorigenesis, proliferation of glioma stem cells, and drug resistance. In this review, we summarize the knowledge on the biological functions and prognostic value of lncRNA-MALAT1 in gliomas. This mini-review aims to deepen the understanding of lncRNA-MALAT1 as a novel potential therapeutic target for the individualized precision treatment of gliomas.

6.
Mol Cell Endocrinol ; 544: 111551, 2022 03 15.
Article En | MEDLINE | ID: mdl-34990740

Thyroid cancer (TC) is a very common endocrine cancer worldwide. Further understanding and revealing the molecular mechanism underlying thyroid cancer are indispensable for the development of effective diagnosis and treatments. Long non-coding RNAs (lncRNAs), a series of non-coding RNAs with a length of >200 nts, have been regarded as crucial regulators of many cancers playing a tumor suppressive or oncogenic role, depending on circumstances. lncRNA ZNF674-AS1 was reported to be abnormally expressed in TC, but the exact mechanism remains unclear. This study aims to probe the mechanism and roles of ZNF674-AS1 in TC. The expression patterns of RNAs and proteins were determined via qRT-PCR and western blotting, respectively. Cell proliferation, migration and invasion were detected using MTT and Transwell assays. ZNF674-AS1 and SOCS4 expression were remarkably reduced while miR-181a was upregulated in TC tissues and cells. Enforced expression of ZNF674-AS1 inhibited proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro and reduced tumour growth in vivo. Mechanistic assays verified that ZNF674-AS1 directly interacted with miR-181a to increase SOCS4 expression. In addition, miR-181a overexpression aggravated proliferation, metastasis and EMT by inhibiting SOCS4. Interestingly, inhibition of miR-181a diminished the promoting effects of ZNF674-AS1 silencing on the malignant behaviours of TC cells. These data illustrated that ZNF674-AS1 alleviated TC progression by modulating the miR-181a/SOCS4 axis (graphical abstract), further suggesting that ZNF674-AS1 might be used as a therapheutic target in TC treatment.


MicroRNAs , RNA, Long Noncoding , Thyroid Neoplasms , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Thyroid Neoplasms/genetics
7.
Cancer Cell Int ; 21(1): 102, 2021 Feb 12.
Article En | MEDLINE | ID: mdl-33579282

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor. Because of the limited understanding of its pathogenesis, the prognosis of glioblastoma remains poor. This study was conducted to explore potential competing endogenous RNA (ceRNA) network chains and biomarkers in glioblastoma by performing integrated bioinformatics analysis. METHODS: Transcriptome expression data from The Cancer Genome Atlas database and Gene Expression Omnibus were analyzed to identify differentially expressed genes between glioblastoma and normal tissues. Biological pathways potentially associated with the differentially expressed genes were explored by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and a protein-protein interaction network was established using the STRING database and Cytoscape. Survival analysis using Gene Expression Profiling Interactive Analysis was based on the Kaplan-Meier curve method. A ceRNA network chain was established using the intersection method to align data from four databases (miRTarBase, miRcode, TargetScan, and lncBace2.0), and expression differences and correlations were verified by quantitative reverse-transcription polymerase chain reaction analysis and by determining the Pearson correlation coefficient. Additionally, an MTS assay and the wound-healing and transwell assays were performed to evaluate the effects of complement C1s (C1S) on the viability and migration and invasion abilities of glioblastoma cells, respectively. RESULTS: We detected 2842 differentially expressed (DE) mRNAs, 2577 DE long non-coding RNAs (lncRNAs), and 309 DE microRNAs (miRNAs) that were dysregulated in glioblastoma. The final ceRNA network consisted of six specific lncRNAs, four miRNAs, and four mRNAs. Among them, four DE mRNAs and one DE lncRNA were correlated with overall survival (p < 0.05). C1S was significantly correlated with overall survival (p= 0.015). In functional assays, knockdown of C1S inhibited the proliferation and invasion of glioblastoma cell lines. CONCLUSIONS: We established four ceRNA networks that may influence the occurrence and development of glioblastoma. Among them, the MIR155HG/has-miR-129-5p/C1S axis is a potential marker and therapeutic target for glioblastoma. Knockdown of C1S inhibited the proliferation, migration, and invasion of glioblastoma cells. These findings clarify the role of the ceRNA regulatory network in glioblastoma and provide a foundation for further research.

8.
Front Pharmacol ; 11: 560543, 2020.
Article En | MEDLINE | ID: mdl-33362537

Gliomas are the most fatal malignant cerebral tumors. Temozolomide (TMZ), as the primary chemotherapy drug, has been widely used in clinics. However, resistance of TMZ still remains to poor defined. LncRNAs have been reported to play crucial roles in progression of various cancers and resistance of multiple drugs. However, the biological function and underlying mechanisms of most lncRNAs in glioma still remains unclear. Based on the TCGA database, a total of 94 differentially expressed lncRNAs, including 16 up-regulated genes and 78 downregulated genes were identified between gliomas and normal brain tissues. Subsequently, lncRNA DLEU1, HOTAIR, and LOC00132111 were tested to be significantly related to overall survival (OS) between high- and low-expression groups. Additionally, we verified that lncRNA DLEU1 was high expressed in 108 gliomas, compared with 19 normal brain tissues. And high expression of lncRNA DLEU1 predicted a poor prognosis (HR = 1.703, 95%CI: 1.133-2.917, p-value = 0.0159). Moreover, functional assays revealed that knockdown of lncRNA DLEU1 could suppress the proliferation by inducing cell cycle arrest at G1 phase and reducing the S phase by down-regulating the CyclinD1 and p-AKT, as the well as migration and invasion by inhibiting the epithelial-mesenchymal transition (EMT) markers, such as ZEB1, N-cadherin, ß-catenin and snail in glioma cells. Furthermore, silencing lncRNA DLEU1 suppressed TMZ-activated autophagy via regulating the expression of P62 and LC3, and promoted sensitivity of glioma cells to TMZ by triggering apoptosis. Conclusively, our study indicated that lncRNA DLEU1 might perform as a prognostic potential target and underlying therapeutic target for sensitivity of glioma to TMZ.

9.
Front Oncol ; 10: 536875, 2020.
Article En | MEDLINE | ID: mdl-33134160

Glioblastoma multiforme (GBM) is the most malignant glioma with a high death rate. N6-methyladenosine (m6A) RNA methylation plays an increasingly important role in tumors. The current study aimed to determine the function of the regulators of m6A RNA methylation in GBM. We evaluated the difference, interaction, and correlation of these regulators with TCGA database. HNRNPC, WTAP, YTHDF2 and, YTHDF1 were significantly upregulated in GBM. To explore the expression characteristics of regulators in GBM, we defined two subgroups through consensus cluster. HNRNPC, WTAP, and YTHDF2 were significantly upregulated in the cluster2 which had a good overall survival (OS). To investigate the prognostic value of regulators, we used lasso cox regression algorithm to screen an independent prognostic risk characteristic based on the expression of HNRNPC, ZC3H13, and YTHDF2. The prognostic feature between the low and high-risk groups was significantly different (P < 0.05), which could predict significance of prognosis (area under the curve (AUC) = 0.819). Moreover, we used western blot, RT-PCR, and immunohistochemical staining to verify the expression of HNRNPC was associated with malignancy and development of gliomas. Similarly, the high expression of HNRNPC had a good prognosis. In conclusion, HNRNPC is a vital participant in the malignant progression of GBM and might be valuable for prognosis.

...