Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Anal Bioanal Chem ; 416(13): 3223-3237, 2024 May.
Article En | MEDLINE | ID: mdl-38573345

Over the past few decades, anabolic androgenic steroids (AASs) have been abused in and out of competition for their performance-enhancing and muscle-building properties. Traditionally, AASs were commonly detected using gas chromatography-mass spectrometry in the initial testing procedure for doping control purposes. Gas chromatography-Orbitrap high-resolution mass spectrometry (GC-Orbitrap-HRMS) is a new technology that has many advantages in comparison with GC-MS (e.g., a maximum resolving power of 240,000 (FWHM at m/z 200), excellent sub-ppm mass accuracy, and retrospective data analysis after data acquisition). Anti-doping practitioners are encouraged to take full advantage of the updated techniques of chromatography-mass spectrometry to develop sensitive, specific, and rapid screening methods for AASs. A new method for screening a wide range of AASs in human urine using GC-Orbitrap-HRMS was developed and validated. The method can qualitatively determine 70 anabolic androgenic steroids according to the minimum required performance limit of the World Anti-Doping Agency. Moreover, the validated method was successfully applied to detect six metabolites in urine after the oral administration of metandienone, and their excretion curves in vivo were studied. Metandienone M6 (17ß-hydroxymethyl-17α-methyl-18-nor-androst-1,4,13-trien-3-one) has been identified as a long-term urinary metabolite which can be detected up to 7 weeks, thus providing a longer detection window compared with previous studies. This study provides a rationale for GC-Orbitrap-HRMS in drug metabolism and non-targeted screening.


Anabolic Agents , Doping in Sports , Gas Chromatography-Mass Spectrometry , Substance Abuse Detection , Humans , Gas Chromatography-Mass Spectrometry/methods , Substance Abuse Detection/methods , Anabolic Agents/urine , Steroids/urine , Androgens/urine , Limit of Detection , Male , Anabolic Androgenic Steroids
2.
Medicine (Baltimore) ; 97(46): e12912, 2018 Nov.
Article En | MEDLINE | ID: mdl-30431566

BACKGROUND: Autophagy is a mechanism which relies on lysosomes for clearance and recycling of abnormal proteins or organelles. Many studies have demonstrated that the deregulation of autophagy is associated with the development of various diseases including cancer. The use of autophagy inhibitors is an emerging trend in cancer treatment. However, the value of autophagy inhibitors remains under debate. Thus, a meta-analysis was performed, aiming to evaluate the clinical value of autophagy-inhibitor-based therapy. METHODS: We searched for clinical studies that evaluated autophagy-inhibitor-based therapy in cancer. We extracted data from these studies to evaluate the relative risk (RR) of overall response rate (ORR), 6-month progression-free survival (PFS) rate, and 1-year overall survival (OS) rate. RESULTS: Seven clinical trials were identified (n = 293). Treatments included 2 combinations of hydroxychloroquine and gemcitabine, 1 combination of hydroxychloroquine and doxorubicin, 1 combination of chloroquine and radiation, 2 combinations of chloroquine, temozolomide, and radiation, and 1 hydroxychloroquine monotherapy. Autophagy-inhibitor-based therapy showed higher ORR (RR: 1.33, 95% confidence interval [CI]: 0.95-1.86, P = .009), PFS (RR: 1.72, 95% CI: 1.05-2.82, P = .000), OS (RR: 1.39, 95% CI: 1.11-1.75, P = .000) values than the therapy without inhibiting autophagy. CONCLUSION: This meta-analysis showed that autophagy-inhibitor-based therapy has better treatment response compared to chemotherapy or radiation therapy without inhibiting autophagy, which may provide a new strategy for the treatment of cancers.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Autophagy/drug effects , Chloroquine/administration & dosage , Hydroxychloroquine/administration & dosage , Neoplasms/drug therapy , Clinical Trials as Topic , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Doxorubicin/administration & dosage , Humans , Risk , Temozolomide , Treatment Outcome , Gemcitabine
...