Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Adv Healthc Mater ; : e2400659, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700840

The exploration of sonodynamic therapy (SDT) as a possible replacement for antibiotics by creating reactive oxygen species (ROS) is suggested as a non-drug-resistant theranostic method. However, the low-efficiency ROS generation and complex tumor microenvironment which can deplete ROS and promote tumor growth will cause the compromised antibacterial efficacy of SDT. Herein, through an oxygen vacancy engineering strategy, TiO2- x microspheres with an abundance of Ti3+ are synthesized using a straightforward reductant co-assembly approach. The narrow bandgaps and Ti3+/Ti4+-mediated multiple-enzyme catalytic activities of the obtained TiO2- x microspheres make them suitable for use as sonosensitizers and nanozymes. When graphene quantum dot (GQD) nanoantibiotics are deposited on TiO2- x microspheres, the resulting GQD/TiO2- x shows an increased production of ROS, which can be ascribed to the accelerated separation of electron-hole pairs, as well as the peroxidase-like catalytic activity mediated by Ti3+, and the depletion of glutathione mediated by Ti4+. Moreover, the catalytic activities of TiO2- x microspheres are amplified by the heterojunctions-accelerated carrier transfer. In addition, GQDs can inhibit Topo I, displaying strong antibacterial activity and further enhancing the antibacterial activity. Collectively, the combination of GQD/TiO2- x-mediated SDT/NCT with nanoantibiotics can result in a synergistic effect, allowing for multimodal antibacterial treatment that effectively promotes wound healing.

2.
ACS Nano ; 18(4): 3814-3825, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38230632

Nanomaterials with enzyme-mimicking functions, termed nanozymes, offer attractive opportunities for biocatalysis and biomedicine. However, manipulating nanozyme selectivity poses an insurmountable hurdle. Here, we propose the concept of an energy-governed electron lock that controls electron transfer between nanozyme and substrates to achieve selectivity manipulation of enzyme-like catalysis. An electron lock can be constructed and opened, via modulating the nanozyme's electron energy to match the energy barrier of enzymatic reactions. An iron-doped carbon dot (FeCD) nanozyme with easy-to-regulate electron energy is selected as a proof of concept. Through regulating the conduction band which dominates electron energy, activatable oxidase and selective peroxidase (POD) with substrate affinity 123-fold higher than that of natural horseradish peroxidase (HRP) is achieved. Furthermore, while maintaining selectivity, FeCDs exhibit catalytic kinetics comparable to that of HRP upon transforming photons into electrons. Superior selectivity, efficient catalysis, and undetectable biotoxicity energize FeCDs as potent targeted drugs on antibiotic-resistant bacterial abscesses. An electron lock provides a robust strategy to manipulate selectivity toward advanced nanozymes.


Electrons , Peroxidases , Peroxidase , Horseradish Peroxidase , Catalysis
3.
J Nanobiotechnology ; 20(1): 12, 2022 Jan 04.
Article En | MEDLINE | ID: mdl-34983560

The management of diabetic ulcer (DU) to rescue stalled wound healing remains a paramount clinical challenge due to the spatially and temporally coupled pathological wound microenvironment that features hyperglycemia, biofilm infection, hypoxia and excessive oxidative stress. Here we present a pH-switchable nanozyme cascade catalysis (PNCC) strategy for spatial-temporal modulation of pathological wound microenvironment to rescue stalled healing in DU. The PNCC is demonstrated by employing the nanozyme of clinically approved iron oxide nanoparticles coated with a shell of glucose oxidase (Fe3O4-GOx). The Fe3O4-GOx possesses intrinsic glucose oxidase (GOx), catalase (CAT) and peroxidase (POD)-like activities, and can catalyze pH-switchable glucose-initiated GOx/POD and GOx/CAT cascade reaction in acidic and neutral environment, respectively. Specifically, the GOx/POD cascade reaction generating consecutive fluxes of toxic hydroxyl radical spatially targets the acidic biofilm (pH ~ 5.5), and eradicates biofilm to shorten the inflammatory phase and initiate normal wound healing processes. Furthermore, the GOx/CAT cascade reaction producing consecutive fluxes of oxygen spatially targets the neutral wound tissue, and accelerates the proliferation and remodeling phases of wound healing by addressing the issues of hyperglycemia, hypoxia, and excessive oxidative stress. The shortened inflammatory phase temporally coupled with accelerated proliferation and remodeling phases significantly speed up the normal orchestrated wound-healing cascades. Remarkably, this Fe3O4-GOx-instructed spatial-temporal remodeling of DU microenvironment enables complete re-epithelialization of biofilm-infected wound in diabetic mice within 15 days while minimizing toxicity to normal tissues, exerting great transformation potential in clinical DU management. The proposed PNCC concept offers a new perspective for complex pathological microenvironment remodeling, and may provide a powerful modality for the treatment of microenvironment-associated diseases.


Diabetes Mellitus, Experimental , Nanostructures , Ulcer , Animals , Biofilms/drug effects , Catalysis , Cellular Microenvironment/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Hydrogen-Ion Concentration , Mice , Nanomedicine , Ulcer/etiology , Ulcer/pathology , Wound Healing/drug effects
4.
Adv Sci (Weinh) ; 9(10): e2105252, 2022 04.
Article En | MEDLINE | ID: mdl-35088586

The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.


Anti-Infective Agents , Bacterial Infections , Nanostructures , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Humans , Nanostructures/chemistry , Nanostructures/therapeutic use , Physical Stimulation
5.
J Mater Chem B ; 9(9): 2314-2322, 2021 03 11.
Article En | MEDLINE | ID: mdl-33616590

Nano-radiosensitizers provide a powerful tool for cancer radiation therapy. However, their limited tumor retention/penetration and the inherent or adaptive radiation resistance of tumor cells hamper the clinical success of radiation therapy. Herein, we report a synergistic strategy for potentiated cancer radiation/gene therapy based on transformable gold nanocluster aggregates loaded with antisense oligonucleotide-targeting survivin mRNA (named AuNC-ASON). AuNC-ASON exhibited acidic pH-triggered structure splitting from a gold nanocluster aggregate (around 80 nm) to gold nanocluster (<2 nm), leading to the tumor microenvironment-responsive size transformation of the nano-radiosensitizer and activated release of the loaded antisense oligonucleotides to perform gene silencing. The in vitro experiments demonstrated that AuNC-ASON could amplify and improve the radio-sensitivity of tumor cells (the sensitization enhancement ratio was about 1.81) as a result of the synergistic effect of the transformable gold nanocluster radiosensitizer and survivin gene interference. Remarkably, the size transformation capability realized the high tumor retention/penetration and renal metabolism of AuNC-ASON in vivo and boosted the radio-susceptibility of cancer cells with the assistance of survivin gene interference, synergistically achieving potentiated tumor radiation/gene therapy. The proposed concept of transformable nano-radiosensitizer aggregate-based synergistic therapy can be utilized as a general strategy to guide the design of activatable multifunctional nanosystems for cancer theranostics.


Drug Carriers/chemistry , Genetic Therapy , Gold/chemistry , Nanostructures/chemistry , Neoplasms/genetics , Neoplasms/radiotherapy , Cell Line, Tumor , Combined Modality Therapy , Drug Liberation , Gene Silencing , Humans , Hydrogen-Ion Concentration , Oligonucleotides, Antisense/chemistry , Oligonucleotides, Antisense/genetics , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/therapeutic use
6.
J Mater Chem B ; 8(33): 7403-7412, 2020 08 26.
Article En | MEDLINE | ID: mdl-32658955

Sensitive diagnosis and elimination of multidrug-resistant bacterial infections at an early stage remain paramount challenges. Herein, we present a gelatinase-responsive turn-on nanoprobe for in situ near-infrared (NIR) fluorescence imaging and localized photothermal treatment (PTT) of in vivo methicillin-resistant Staphylococcus aureus (MRSA) infections. The designed nanoprobe (named AuNS-Apt-Cy) is based on gold nanostars functionalized with MRSA-identifiable aptamer and gelatinase-responsive heptapeptide linker (CPLGVRG)-cypate complexes. The AuNS-Apt-Cy nanoprobe is non-fluorescent in aqueous environments due to the fluorescence resonance energy transfer between the gold nanostar core and cypate dye. We demonstrate that the AuNS-Apt-Cy nanoprobe can achieve MRSA targeting and accumulation as well as gelatinase (overexpressed in MRSA environments)-responsive turn-on NIR fluorescence due to the cleavage of the CPLGVRG linker and localized in vitro PTT via a mechanism involving bacterial cell wall and membrane disruption. In vivo experiments show that the AuNS-Apt-Cy nanoprobe can enable rapid (1 h post-administration) and in situ turn-on NIR fluorescence imaging with high sensitivity (105 colony-forming units) in diabetic wound and implanted bone plate mouse models. Remarkably, the AuNS-Apt-Cy nanoprobe can afford efficient localized PTT of diabetic wound and implanted bone plate-associated MRSA infections under the guidance of turn-on NIR fluorescence imaging, showing robust capability for early diagnosis and treatment of in vivo MRSA infections. In addition, the nanoprobe exhibits negligible damage to surrounding healthy tissues during PTT due to its targeted accumulation in the MRSA-infected site, guaranteeing its excellent in vivo biocompatibility and solving the main bottlenecks that hinder the clinical application of PTT-based antibacterial strategies.


Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Methicillin-Resistant Staphylococcus aureus/physiology , Nanostructures/chemistry , Optical Imaging/methods , Phototherapy/methods , Staphylococcal Infections/therapy , Amino Acid Sequence , Animals , Aptamers, Nucleotide/metabolism , Gelatinases/metabolism , Gold/chemistry , Mice , Oligopeptides/chemistry , Staphylococcal Infections/diagnostic imaging , Staphylococcal Infections/metabolism
...