Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sensors (Basel) ; 24(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38610537

Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.


Metal Nanoparticles , Nucleic Acids , Aflatoxin B1 , Gold , Nucleic Acid Hybridization
2.
Anal Bioanal Chem ; 413(16): 4217-4226, 2021 Jul.
Article En | MEDLINE | ID: mdl-33934192

Tetrabromobisphenol A (TBBPA) is a kind of brominated flame retardant that is usually added to products to reduce their flame retardancy. However, its extensive use has resulted in their residues being found in the environment, which is very harmful. Herein, an indirect competitive immunosensor has been established for TBBPA detection based on the signal amplification system. Pd nanospheres in situ reduced on the surface of MnO2 nanosheet hybrid (MnO2/Pd) was used as the label for the secondary antibody through the Pd-N bond, and gold-toluidine blue composite was loaded onto MWCNTs (MWCNTs/Au-TB), which functioned as the platform for the immunosensor. The spherical structure of Pd had abundant catalytic active sites, which enhanced the catalytic activity of MnO2/Pd as the label, hence amplifying the signal response. Besides, MWCNTs/Au-TB improved electron transfer and produced a strong signaling pathway for immobilizing antigens through the Au-NH2 bond, which can specifically recognize primary antibodies to improve sensitivity. The immunosensor had a linear concentration range of 0-81 ng/mL, a low detection limit of 0.17 ng/mL (S/N = 3), with good stability, selectivity, and reproducibility based on the above advantages. Additionally, the acceptable accuracy and recoveries (recoveries, 92-124%; CV, 3.3-8.8%) in the real water sample analysis indicated that this strategy is promising for emerging pollutant analysis.


Cetrimonium/chemistry , Electrochemical Techniques/methods , Manganese Compounds/chemistry , Oxides/chemistry , Polybrominated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Antibodies, Immobilized/chemistry , Biosensing Techniques/methods , Immunoassay/methods , Limit of Detection , Nanostructures/chemistry
...