Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4746, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834546

RESUMEN

Artificial photosynthesis is a promising approach to produce clean fuels via renewable solar energy. However, it is practically constrained by two issues of slow photogenerated carrier migration and rapid electron/hole recombination. It is also a challenge to achieve a 2:1 ratio of H2 and O2 for overall water splitting. Here we report a rational design of spatially differentiated two-dimensional Bi4Ti3O12 nanosheets to enhance overall water splitting. Such a spatially differentiated structure overcomes the limitation of charge transfer across different crystal planes in a single crystal semiconductor. The experimental results show a redistribution of charge within a crystal plane. The resulting photocatalyst produces 40.3 µmol h-1 of hydrogen and 20.1 µmol h-1 of oxygen at a near stoichiometric ratio of 2:1 and a solar-to-hydrogen efficiency of 0.1% under simulated solar light.

2.
Angew Chem Int Ed Engl ; 63(28): e202402694, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38679569

RESUMEN

Solar-driven upgrading of biomass-derived 5-hydroxylmethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) holds great promise for sustainable production of bio-plastics and resins. However, the process is limited by poor selectivity and sluggish kinetics due to the vertical coordination of HMF at relatively strong metal sites. Here, we purposely developed a Cu(II) porphyrin framework featuring side-chain incorporated urea linkages, denoted as TBUPP-Cu MOF, to render HMF a weak hydrogen bond at the urea site and flat adsorption via π-π stacking with the benzene moiety. The unique configuration promotes the approaching of -CHO of HMF to the photoexcited porphyrin ring towards kinetically and thermodynamically favourable intermediate formation and subsequent desorption. The charge localisation and orbital energy alignment enable the selective activation of O2 over the porphyrin to generate ⋅O2 - and 1O2 instead of highly oxidative H2O2 and ⋅OH via spin-flip electron transfer, which drive the ambient oxidation of proximal -CHO. The effective utilisation of redox species and circumvented over-oxidation facilitate a FDCA selectivity of >90 % with a high turnover number of 193 molHMF molCu -1. The facile purification of high-purity FDCA and zero-waste recycling of intermediates and durable catalyst feature TBUPP-Cu MOF a promising photo-oxidation platform towards net-zero biorefining and organic transformations.

3.
Nat Commun ; 15(1): 2239, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472201

RESUMEN

The precise design of single-atom nanozymes (SAzymes) and understanding of their biocatalytic mechanisms hold great promise for developing ideal bio-enzyme substitutes. While considerable efforts have been directed towards mimicking partial bio-inspired structures, the integration of heterogeneous SAzymes configurations and homogeneous enzyme-like mechanism remains an enormous challenge. Here, we show a spatial engineering strategy to fabricate dual-sites SAzymes with atomic Fe active center and adjacent Cu sites. Compared to planar Fe-Cu dual-atomic sites, vertically stacked Fe-Cu geometry in FePc@2D-Cu-N-C possesses highly optimized scaffolds, favorable substrate affinity, and fast electron transfer. These characteristics of FePc@2D-Cu-N-C SAzyme induces biomimetic O2 activation through homogenous enzymatic pathway, resembling functional and mechanistic similarity to natural cytochrome c oxidase. Furthermore, it presents an appealing alternative of cytochrome P450 3A4 for drug metabolism and drug-drug interaction. These findings are expected to deepen the fundamental understanding of atomic-level design in next-generation bio-inspired nanozymes.


Asunto(s)
Biomimética , Complejo IV de Transporte de Electrones , Biocatálisis , Transporte de Electrón , Ingeniería , Catálisis
4.
J Am Chem Soc ; 145(25): 14133-14142, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37317545

RESUMEN

Electrocatalytic reduction of carbon dioxide into value-added chemical fuels is a promising way to achieve carbon neutrality. Bismuth-based materials have been considered as favorable electrocatalysts for converting carbon dioxide to formic acid. Moreover, size-dependent catalysis offers significant advantages in catalyzed heterogeneous chemical processes. However, the size effects of bismuth nanoparticles on formic acid production have not been fully explored. Here, we prepared Bi nanoparticles uniformly supported on porous TiO2 substrate electrocatalytic materials by in situ segregation of the Bi element from Bi4Ti3O12. The Bi-TiO2 electrocatalyst with Bi nanoparticles of 2.83 nm displays a Faradaic efficiency of greater than 90% over a wide potential range of 400 mV. Theoretical calculations have also demonstrated subtle electronic structural evolutions induced by the size variations of Bi nanoparticles, where the 2.83 nm Bi nanoparticles display the most active p-band and d-band centers to guarantee high electroactivity toward CO2RR.

5.
Angew Chem Int Ed Engl ; 62(15): e202300119, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780128

RESUMEN

Single-atom nanozymes (SAzymes) are promising in next-generation nanozymes, nevertheless, how to rationally modulate the microenvironment of SAzymes with controllable multi-enzyme properties is still challenging. Herein, we systematically investigate the relationship between atomic configuration and multi-enzymatic performances. The constructed MnSA -N3 -coordinated SAzymes (MnSA -N3 -C) exhibits much more remarkable oxidase-, peroxidase-, and glutathione oxidase-like activities than that of MnSA -N4 -C. Based on experimental and theoretical results, these multi-enzyme-like behaviors are highly dependent on the coordination number of single atomic Mn sites by local charge polarization. As a consequence, a series of colorimetric biosensing platforms based on MnSA -N3 -C SAzymes is successfully built for specific recognition of biological molecules. These findings provide atomic-level insight into the microenvironment of nanozymes, promoting rational design of other demanding biocatalysts.


Asunto(s)
Técnicas Biosensibles , Manganeso , Colorimetría , Carbono , Peroxidasas , Peroxidasa , Catálisis
6.
Anal Chem ; 92(4): 3354-3360, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32011882

RESUMEN

Herein, we report on a two-dimensional amino-functionalized Ti3C2-MXene (N-Ti3C2-MXene)-based surface plasmon resonance (SPR) biosensor for detecting carcinoembryonic antigen (CEA) utilizing a sandwich format signal amplification strategy. Our biosensor employs an N-Ti3C2-MXene nanosheet-modified sensing platform and a signal enhancer comprising N-Ti3C2-MXene-hollow gold nanoparticles (HGNPs)-staphylococcal protein A (SPA) complexes. Ultrathin Ti3C2-MXene nanosheets were synthesized and functionalized with aminosilane to provide a hydrophilic-biocompatible nanoplatform for covalent immobilization of the monoclonal anti-CEA capture antibody (Ab1). The N-Ti3C2-MXene/HGNPs nanohybrids were synthesized and further decorated with SPA to immobilize the polyclonal anti-CEA detection antibody (Ab2) and serve as signal enhancers. The capture of CEA followed by the formation of the Ab2-conjugated SPA/HGNPs/N-Ti3C2-MXene sandwiched nanocomplex on the SPR chip results in the generation of a response signal. The fabricated N-Ti3C2-MXene-based SPR biosensor exhibited a linear detection range of 0.001-1000 PM with a detection limit of 0.15 fM. The proposed biosensor showed high sensitivity and specificity for CEA in serum samples, which gives it application potential in the early diagnosis and monitoring of cancer. We believe that this work also opens new avenues for development of MXene-based highly sensitive biosensors for determining various biomolecules.


Asunto(s)
Antígeno Carcinoembrionario/análisis , Nanopartículas/química , Titanio/química , Técnicas Biosensibles , Humanos , Resonancia por Plasmón de Superficie
7.
Biosens Bioelectron ; 144: 111697, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536930

RESUMEN

Surface plasmon resonance (SPR) has become a leading technique for in situ bioaffinity assay of diverse targets without need of fluorescent or enzymatic labeling. Nanomaterials-enhanced SPR sensors have developed rapidly and widened the application scope of SPR sensing technology. In this report we describe an ultrasensitive SPR biosensor for detecting carcinoembryonic antigen (CEA). Our SPR biosensor utilizes a Ti3C2-MXene-based sensing platform and multi-walled carbon nanotube (MWCNTs)-polydopamine (PDA)-Ag nanoparticle (AgNPs) signal enhancer. Ti3C2-MXene, a new class of two-dimensional (2D) transition metal carbides, offers a large hydrophilic-biocompatible surface ideal for SPR biosensing. Ti3C2-MXene/AuNPs composites after synthesis are then decorated with staphylococcal protein A (SPA) to orient and immobilize monoclonal anti-CEA antibody (Ab1) through its Fc region. By introducing MWCNTs-PDA-AgNPs-polyclonal anti-CEA antibody (MWPAg-Ab2) conjugate combined with a sandwich format, the present method provides a dynamic range for CEA determination of 2×10-16 to 2×10-8 M and a detection limit of 0.07 fM. This biosensing approach demonstrates good reproducibility and high specificity for CEA in real serum samples providing a promising method to evaluate CEA in human serum for early diagnosis and monitoring of cancer.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario/aislamiento & purificación , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie , Anticuerpos Antiidiotipos/química , Anticuerpos Antiidiotipos/inmunología , Antígeno Carcinoembrionario/química , Oro/química , Humanos , Nanoestructuras/química , Nanotubos de Carbono/química , Plata/química , Elementos de Transición/química
8.
Chem Commun (Camb) ; 55(36): 5271-5274, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30993298

RESUMEN

Herein, we develop an Fe-N/C-CNT nanomaterial with Fe-N3 units as a paradigm for excellent oxidase mimics by theoretical prediction and experimental implementation. The mechanism of the structure-dependent enzymatic activity is systematically investigated and elucidated from the perspective of the different configurations of M-Nx models (x = 0, 3, 4, and 5; M = Fe, Co, and Ni).


Asunto(s)
Materiales Biomiméticos/química , Compuestos de Hierro/química , Nanoestructuras/química , Nanotubos de Carbono/química , Nitrógeno/química , Técnicas Biosensibles/métodos , Catálisis , Peróxido de Hidrógeno/química , Límite de Detección , Estructura Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Relación Estructura-Actividad , Propiedades de Superficie
9.
Nanomicro Lett ; 11(1): 102, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34138037

RESUMEN

The single-atom nanozyme is a new concept and has tremendous prospects to become a next-generation nanozyme. However, few studies have been carried out to elucidate the intrinsic mechanisms for both the single atoms and the supports in single-atom nanozymes. Herein, the heterogeneous single-atom Co-MoS2 (SA Co-MoS2) is demonstrated to have excellent potential as a high-performance peroxidase mimic. Because of the well-defined structure of SA Co-MoS2, its peroxidase-like mechanism is extensively interpreted through experimental and theoretical studies. Due to the different adsorption energies of substrates on different parts of SA Co-MoS2 in the peroxidase-like reaction, SA Co favors electron transfer mechanisms, while MoS2 relies on Fenton-like reactions. The different catalytic pathways provide an intrinsic understanding of the remarkable performance of SA Co-MoS2. The present study not only develops a new kind of single-atom catalyst (SAC) as an elegant platform for understanding the enzyme-like activities of heterogeneous nanomaterials but also facilitates the novel application of SACs in biocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...