Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9669, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316514

RESUMEN

Aiming at the problems of low utilization rate of corn fertilizer, low precision of fertilization ratio, and time-consuming and laborious topdressing in the later stage, an U-shaped fertilization device with uniform fertilizer mechanism was designed. The device was mainly composed of uniform fertilizer mixing mechanism, fertilizer guide plate and fertilization plate. Compound fertilizer was applied on both sides and slow/controlled release fertilizer was applied at the bottom to form an U-shaped distribution of fertilizer around corn seeds. Through theoretical analysis and calculation, the structural parameters of the fertilization device were determined. Through the simulated soil tank test, the quadratic regression orthogonal rotation combination design was carried out on the main factors affecting the spatial stratification effect of fertilizer. The optimal parameters were obtained as follows: the stirring speed of the stirring structure was 300 r/min, the bending angle of the fertilization tube was 165°, and the operating speed of the fertilization device was 3 km/h. The results of bench verification test showed that under the optimized stirring speed and bending angle, the fertilizer particles were stirred evenly, and the average values of fertilizer flowing out of the fertilization tubes on both sides were 299.5 g and 297.4 g, respectively. The average fertilizer amounts of the three fertilizer outlets were 200.4 g, 203.2 g and 197.7 g, respectively, which met the agronomic requirements of 1:1:1 fertilization, and the variation coefficients of fertilizer amounts on both sides of the fertilizer pipe and each layer were less than 0.1% and 0.4%, respectively. The simulation results of the optimized U-shaped fertilization device can achieve the expected U-shaped fertilization effect around corn seeds. The results of field experiment showed that the U-shaped fertilization device could realize the U-shaped proportional application of fertilizer in soil. The distance between the upper end of fertilization on both sides and the distance between the base fertilizer and the surface were 87.3-95.2 mm and 197.8-206.0 mm, respectively. The transverse distance between the fertilizers on both sides was 84.3-99.4 mm, and the error with the designed theoretical fertilization was within 10 mm. Compared with the traditional side fertilization method, the number of corn roots increased by 5-6, the root length increased by 30-40 mm, and the yield increased by 9.9-14.8%.

2.
ACS Omega ; 7(29): 25905, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910101

RESUMEN

[This corrects the article DOI: 10.1021/acsomega.2c01273.].

3.
ACS Omega ; 7(24): 20779-20790, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35755354

RESUMEN

In this study, a spatially stratified proportional fertilizer application device was designed, which was mainly composed of a fertilizer equalization and stirring structure, fertilizer guide plate, and fertilizer plate. This was aimed at solving challenges presented by current fertilizer devices that include a poor layering effect due to untimely return of soil, excess nutrients in the early stages of plant growth, and insufficient quantities in the later stages. The "seed fertilizer + chasing fertilizer" is time-consuming and laborious; seed and fertilizer (without layering) are applied to the soil at once, which tends to cause too much nutrients for plants in the early stage and not enough nutrients in the later stage; and the layered fertilizer machines currently on the market have a poor layering effect due to untimely soil return. Through theoretical analysis and calculation, the structural parameters of the device were determined, and the main influencing factors of the movement law of fertilizer in the device were analyzed. Through simulating soil tank tests, the main factors affecting the effect of fertilizer spatial stratification were designed by quadratic regression orthogonal rotation combination designs. The optimal parameters including the length of the first fertilizer plate was 100 mm, the installation angle of the fertilizer plate was 80°, the spacing of the fertilizer port was 30 mm, and the uniform stirring speed was 650 r/min. The results of the bench test showed that the fertilizer granules could be uniformly stirred at the optimized stirring speed, with average values of 74.56, 76.56, and 105.19 g, which met the agronomic fertilizer application requirements, and the coefficient of variation of fertilizer application amount in each layer was less than 1%. The field test results showed that the stratified proportional fertilizer application device could achieve the stratified proportional application of fertilizer in the soil in ranges of 80.2-95.4, 150.3-180.2, and 230.3-250.4 mm for the upper, middle, and lower layers, respectively, with an error within 10 mm from the designed theoretical application depth. Compared with the conventional fertilizer application method, this fertilizer application method had a more obvious promotion effect on the 100-grain weight and yield of corn.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...