Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825039

RESUMEN

Mitochondrial dysfunction is a critical factor leading to a wide range of clinically heterogeneous and often severe disorders due to its central role in generating cellular energy. Mutations in the TUFM gene are known to cause combined oxidative phosphorylation deficiency 4 (COXPD4), a rare mitochondrial disorder characterized by a comprehensive quantitative deficiency in mitochondrial respiratory chain (MRC) complexes. The development of a reliable animal model for COXPD4 is crucial for elucidating the roles and mechanisms of TUFM in disease pathogenesis and benefiting its medical management. In this study, we construct a zebrafish tufm-/- mutant that closely resembles the COXPD4 syndrome, exhibiting compromised mitochondrial protein translation, dysfunctional mitochondria with oxidative phosphorylation (OXPHOS) defects, and significant metabolic suppression of the tricarboxylic acid (TCA) cycle. Leveraging this COXPD4 zebrafish model, we comprehensively validate the clinical relevance of TUFM mutations and identify probucol as a promising therapeutic approach for managing COXPD4. Our data offer valuable insights for understanding mitochondrial diseases and developing effective treatments.

2.
J Genet Genomics ; 51(6): 630-641, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38253235

RESUMEN

Clathrin-mediated endocytosis has been implicated in various physiological processes, including nutrient uptake, signal transduction, synaptic vesicle recycling, maintenance of cell polarity, and antigen presentation. Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis, the physiological function of α- and γ-adaptin binding protein (aagab) remains elusive. In this study, we investigate the biological function of aagab during zebrafish development. We establish a loss-of-function mutant of aagab in zebrafish, revealing impaired swimming and early larval mortality. Given the high expression level of aagab in the brain, we probe into its physiological role in the nervous system. aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons, aligning with reduced neurotransmitter release (e.g., norepinephrine) in the tectal neuropil of aagab mutants. Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release, calcium responses, swimming ability, and survival. Furthermore, our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells, pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling. In conclusion, our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.


Asunto(s)
Larva , Proteínas de Pez Cebra , Pez Cebra , Animales , Endocitosis/genética , Regulación del Desarrollo de la Expresión Génica/genética , Larva/crecimiento & desarrollo , Larva/genética , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
3.
Signal Transduct Target Ther ; 8(1): 342, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37691058

RESUMEN

Intraluminal lymphatic valves (LVs) and lymphovenous valves (LVVs) are critical to ensure the unidirectional flow of lymphatic fluid. Morphological abnormalities in these valves always cause lymph or blood reflux, and result in lymphedema. However, the underlying molecular mechanism of valve development remains poorly understood. We here report the implication of Efnb2-Ephb4-Rasa1 regulated Erk signaling axis in lymphatic valve development with identification of two new valve structures. Dynamic monitoring of phospho-Erk activity indicated that Erk signaling is spatiotemporally inhibited in some lymphatic endothelial cells (LECs) during the valve cell specification. Inhibition of Erk signaling via simultaneous depletion of zygotic erk1 and erk2 or treatment with MEK inhibitor selumetinib causes lymphatic vessel hypoplasia and lymphatic valve hyperplasia, suggesting opposite roles of Erk signaling during these two processes. ephb4b mutants, efnb2a;efnb2b or rasa1a;rasa1b double mutants all have defective LVs and LVVs and exhibit blood reflux into lymphatic vessels with an edema phenotype. Importantly, the valve defects in ephb4b or rasa1a;rasa1b mutants are mitigated with high-level gata2 expression in the presence of MEK inhibitors. Therefore, Efnb2-Ephb4 signaling acts to suppress Erk activation in valve-forming cells to promote valve specification upstream of Rasa1. Not only do our findings reveal a molecular mechanism of lymphatic valve formation, but also provide a basis for the treatment of lymphatic disorders.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Transducción de Señal/genética , Fosforilación , Quinasas de Proteína Quinasa Activadas por Mitógenos
4.
Natl Sci Rev ; 9(7): nwac003, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35919785

RESUMEN

The polar bodies (PBs) are extruded microcells during oocyte meiosis and generally regarded as inessentials for embryonic development. Therefore, PBs have been widely used as important materials for pre-implantation genetic diagnosis in human. Here we report that the second PB (PB2) in the mouse zygote may play roles in cell-fate specification and post-implantation development. A subset of mRNAs encoding pluripotency-related factors are enriched in PB2. Nascent proteins may be synthesized in PB2 after fertilization and transport from PB2 to the zygote before the two-cell stage. The PB2-attached blastomere (pbB) at the two-cell stage, compared to the other blastomere (npbB), likely contributes more descendants to the inner cell mass (ICM) lineage in the blastocyst. Removal of PB2 from the zygote or transient blockage of material exchange between PB2 and the zygote by nocodazole treatment appears to cause a loss of the ICM fate bias of pbB. PB2 removal or nocodazole treatment also results in abnormal post-implantation development. Injection of PB2 lysate into pbB of PB2-removed two-cell-stage embryos may reset the cell-fate preference and rescue post-implantation development. Our data collectively suggest that PB2 would demarcate the earliest cell-fate asymmetry of the mouse zygote and be required for post-implantation development.

5.
Sci Adv ; 7(47): eabh0494, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34797706

RESUMEN

5'tRFls are small transfer RNA (tRNA) fragments derived from 5' half of mature tRNAs. However, it is unknown whether 5'tRFls could feed back to regulate tRNA biogenesis. Here, we show that 5'tRFlGly/GCC and 5'tRFlGlu/CTC function to promote transcription of corresponding tRNA genes and are essential for vertebrate early embryogenesis. During zebrafish embryogenesis, dynamics of 5'tRFlGly/GCC and 5'tRFlGlu/CTC levels correlates with that of tRNAGly/GCC and tRNAGlu/CTC levels. Morpholino-mediated knockdown of 5'tRFlGly/GCC or 5'tRFlGlu/CTC down-regulates tRNAGly/GCC or tRNAGlu/CTC levels, respectively, and causes embryonic lethality that is efficiently rescued by coinjection of properly refolded corresponding tRNA. In zebrafish embryos, tRNA:DNA and 5'tRFl:DNA hybrids commonly exist on the template strand of tRNA genes. Mechanistically, unstable 5'tRFl:DNA hybrid may prevent the formation of transcriptionally inhibitory stable tRNA:DNA hybrids on the same tRNA loci so as to facilitate tRNA gene transcription. The uncovered mechanism may be implicated in other physiological and pathological processes.

6.
Nucleic Acids Res ; 49(15): 8961-8973, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34365506

RESUMEN

Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1-34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1-15) and H3-middle (e.g. 14-34) of H3(1-34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core ß-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a 'ground' state (unmodified) H3(1-34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.


Asunto(s)
Histonas/química , Histonas/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo , Regulación Alostérica , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Mutagénesis , Proteínas Nucleares/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Proteínas de Pez Cebra/genética
7.
Nat Cell Biol ; 23(7): 782-795, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34183801

RESUMEN

Endosome fission is essential for cargo sorting and targeting in the endosomal system. However, whether organelles other than the endoplasmic reticulum (ER) participate in endosome fission through membrane contacts is unknown. Here, we characterize a Golgi-derived vesicle, the SEC14L2 compartment, that plays a unique role in facilitating endosome fission through ternary contacts with endosomes and the ER. Localized to the ER-mediated endosome fission site, the phosphatidylinositol transfer protein SEC14L2 promotes phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 3-phosphate (PtdIns3P) conversion before endosome fission. In the absence of SEC14L2, endosome fission is attenuated and more enlarged endosomes arise due to endosomal accumulation of PtdIns4P and reduction in PtdIns3P. Collectively, our data suggest roles of the Golgi network in ER-associated endosome fission and a mechanism involving ER-endosome contacts in the regulation of endosomal phosphoinositide conversion.


Asunto(s)
Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Células COS , Proteínas Portadoras/genética , Chlorocebus aethiops , Fosfatidilinositol 3-Quinasas Clase III/genética , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Retículo Endoplásmico/genética , Endosomas/genética , Aparato de Golgi/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Proteínas de Pez Cebra/genética
8.
Development ; 148(5)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712443

RESUMEN

The transforming growth factor ß (TGFß) signaling family is evolutionarily conserved in metazoans. The signal transduction mechanisms of TGFß family members have been expansively investigated and are well understood. During development and homeostasis, numerous TGFß family members are expressed in various cell types with temporally changing levels, playing diverse roles in embryonic development, adult tissue homeostasis and human diseases by regulating cell proliferation, differentiation, adhesion, migration and apoptosis. Here, we discuss the molecular mechanisms underlying signal transduction and regulation of the TGFß subfamily pathways, and then highlight their key functions in mesendoderm induction, dorsoventral patterning and laterality development, as well as in the formation of several representative tissues/organs.


Asunto(s)
Desarrollo Embrionario/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Estratos Germinativos/metabolismo , Proteína Nodal/metabolismo , Organogénesis , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/química
9.
Nat Commun ; 11(1): 6214, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277480

RESUMEN

Radioprotectors for acute injuries caused by large doses of ionizing radiation are vital to national security, public health and future development of humankind. Here, we develop a strategy to explore safe and efficient radioprotectors by combining Hantzsch's reaction, high-throughput methods and polymer chemistry. A water-soluble polymer with low-cytotoxicity and an excellent anti-radiation capability has been achieved. In in vivo experiments, this polymer is even better than amifostine, which is the only approved radioprotector for clinical applications, in effectively protecting zebrafish embryos from fatally large doses of ionizing radiation (80 Gy X-ray). A mechanistic study also reveals that the radioprotective ability of this polymer originates from its ability to efficiently prevent DNA damage due to high doses of radiation. This is an initial attempt to explore polymer radioprotectors via a multi-component reaction. It allows exploiting functional polymers and provides the underlying insights to guide the design of radioprotective polymers.


Asunto(s)
Técnicas de Química Sintética/métodos , Embrión no Mamífero/efectos de la radiación , Fibroblastos/efectos de la radiación , Polímeros/síntesis química , Protectores contra Radiación/síntesis química , Rayos X , Amifostina/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones , Modelos Químicos , Estructura Molecular , Polímeros/química , Polímeros/farmacología , Protectores contra Radiación/química , Protectores contra Radiación/farmacología , Pez Cebra/embriología
10.
Nat Commun ; 10(1): 1606, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962435

RESUMEN

Vascular endothelial growth factor (VEGF) regulates vasculogenesis by using its tyrosine kinase receptors. However, little is known about whether Sec14-like phosphatidylinositol transfer proteins (PTP) are involved in this process. Here, we show that zebrafish sec14l3, one of the family members, specifically participates in artery and vein formation via regulating angioblasts and subsequent venous progenitors' migration during vasculogenesis. Vascular defects caused by sec14l3 depletion are partially rescued by restoration of VEGFR2 signaling at the receptor or downstream effector level. Biochemical analyses show that Sec14l3/SEC14L2 physically bind to VEGFR2 and prevent it from dephosphorylation specifically at the Y1175 site by peri-membrane tyrosine phosphatase PTP1B, therefore potentiating VEGFR2 signaling activation. Meanwhile, Sec14l3 and SEC14L2 interact with RAB5A/4A and facilitate the formation of their GTP-bound states, which might be critical for VEGFR2 endocytic trafficking. Thus, we conclude that Sec14l3 controls vasculogenesis in zebrafish via the regulation of VEGFR2 activation.


Asunto(s)
Neovascularización Fisiológica/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/metabolismo , Embrión no Mamífero , Desarrollo Embrionario/fisiología , Técnicas de Silenciamiento del Gen , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Lipoproteínas/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Transducción de Señal/fisiología , Transactivadores/metabolismo , Proteínas de Unión al GTP rab5/metabolismo
11.
J Genet Genomics ; 45(8): 443-453, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30174136

RESUMEN

Prpf4 (pre-mRNA processing factor 4), a key component of spliceosome, plays critical roles in pre-mRNA splicing and its mutations result in retinitis pigmentosa due to photoreceptor defects. In this study, we characterized a zebrafish prpf4t243 mutant harboring a Tol2 transposon-based gene trap cassette in the third intron of the prpf4 gene. Cells in the brain and spinal cord gradually undergo p53-dependent apoptosis after 28 hpf in prpf4t243 mutants, suggesting that a widespread function of prpf4 in neural cell survival. In addition, prpf4 is essential for survival of posterior lateral line primordial (pLLP) cells. prpf4 deficiency perturbs Fgf, Wnt/ß-catenin and chemokine signaling pathways and impairs pLLP migration. RNA-Seq analysis suggests that prpf4 deficiency may impair spliceosome assembly, leading to compensatory upregulation of core spliceosomal genes and alteration of pre-mRNA splicing. Taken together, our studies uncover an essential role of prpf4 in pre-mRNA splicing, cell survival and pLLP migration.


Asunto(s)
Sistema de la Línea Lateral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis , Encéfalo/citología , Encéfalo/metabolismo , Movimiento Celular , Supervivencia Celular , Regulación del Desarrollo de la Expresión Génica , Intrones , Sistema de la Línea Lateral/citología , Sistema de la Línea Lateral/embriología , Empalme del ARN , Proteínas de Unión al ARN/genética , Transducción de Señal , Empalmosomas/genética , Empalmosomas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
12.
Hum Mol Genet ; 26(21): 4168-4180, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28985365

RESUMEN

Cell Division Cycle 6 (Cdc6) is a component of pre-replicative complex (preRC) forming on DNA replication origins in eukaryotes. Recessive mutations in ORC1, ORC4, ORC6, CDT1 or CDC6 of the preRC in human cause Meier-Gorlin syndrome (MGS) that is characterized by impaired post-natal growth, short stature and microcephaly. However, vertebrate models of MGS have not been reported. Through N-ethyl-N-nitrosourea mutagenesis and Cas9 knockout, we generate several cdc6 mutant lines in zebrafish. Loss-of-function mutations of cdc6, as manifested by cdc6tsu4305 and cdc6tsu7cd mutants, lead to embryonic lethality due to cell cycle arrest at the S phase and extensive apoptosis. Embryos homozygous for a cdc6 hypomorphic mutation, cdc6tsu21cd, develop normally during embryogenesis. Later on, compared with their wild-type (WT) siblings, cdc6tsu21cd mutant fish show growth retardation, and their body weight and length in adulthood are greatly reduced, which resemble human MGS. Surprisingly, cdc6tsu21cd mutant fish become males with a short life and fail to mate with WT females, suggesting defective reproduction. Overexpression of Cdc6 mutant forms, which mimic human CDC6(T323R) mutation found in a MGS patient, in zebrafish cdc6tsu4305 mutant embryos partially represses cell death phenotype, suggesting that the human CDC6(T323R) mutation is a hypomorph. cdc6tsu21cd mutant fish will be useful to detect more tissue defects and develop medical treatment strategies for MGS patients.


Asunto(s)
Proteínas de Ciclo Celular/genética , Microtia Congénita/genética , Trastornos del Crecimiento/genética , Micrognatismo/genética , Proteínas Nucleares/genética , Rótula/anomalías , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Modelos Animales de Enfermedad , Femenino , Mutación con Pérdida de Función/genética , Masculino , Proteínas Nucleares/metabolismo , Fenotipo , Origen de Réplica , Pez Cebra/metabolismo
13.
Int J Biol Sci ; 13(8): 1051-1066, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28924386

RESUMEN

During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly.


Asunto(s)
Homólogo 4 de AlkB Lisina Desmetilasa/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animales , Miosina Tipo II/metabolismo
14.
Elife ; 62017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28463110

RESUMEN

The non-canonical Wnt/Ca2+ signaling pathway plays important roles in embryonic development, tissue formation and diseases. However, it is unclear how the Wnt ligand-stimulated, G protein-coupled receptor Frizzled activates phospholipases for calcium release. Here, we report that the zebrafish/human phosphatidylinositol transfer protein Sec14l3/SEC14L2 act as GTPase proteins to transduce Wnt signals from Frizzled to phospholipase C (PLC). Depletion of sec14l3 attenuates Wnt/Ca2+ responsive activity and causes convergent and extension (CE) defects in zebrafish embryos. Biochemical analyses in mammalian cells indicate that Sec14l3-GDP forms complex with Frizzled and Dishevelled; Wnt ligand binding of Frizzled induces translocation of Sec14l3 to the plasma membrane; and then Sec14l3-GTP binds to and activates phospholipase Cδ4a (Plcδ4a); subsequently, Plcδ4a initiates phosphatidylinositol-4,5-bisphosphate (PIP2) signaling, ultimately stimulating calcium release. Furthermore, Plcδ4a can act as a GTPase-activating protein to accelerate the hydrolysis of Sec14l3-bound GTP to GDP. Our data provide a new insight into GTPase protein-coupled Wnt/Ca2+ signaling transduction.


Asunto(s)
Señalización del Calcio , Proteínas Portadoras/metabolismo , GTP Fosfohidrolasas/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transactivadores/metabolismo , Vía de Señalización Wnt , Animales , Línea Celular , Receptores Frizzled/metabolismo , Humanos , Fosfolipasas de Tipo C/metabolismo , Pez Cebra
15.
J Biol Chem ; 292(6): 2315-2327, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28003365

RESUMEN

ADP-ribosylation factor GTPases are activated by guanine nucleotide exchange factors including Gbf1 (Golgi brefeldin A-resistant factor 1) and play important roles in regulating organelle structure and cargo-selective vesicle trafficking. However, the developmental role of Gbf1 in vertebrates remains elusive. In this study, we report the zebrafish mutant line tsu3994 that arises from N-ethyl-N-nitrosourea (ENU)-mediated mutagenesis and is characterized by prominent intracerebral and trunk hemorrhage. The mutant embryos develop hemorrhage accompanied by fewer pigments and shorter caudal fin at day 2 of development. The hemorrhage phenotype is caused by vascular breakage in a cell autonomous fashion. Positional cloning identifies a T → G nucleotide substitution in the 23rd exon of the gbf1 locus, resulting in a leucine → arginine substitution (L1246R) in the HDS2 domain. The mutant phenotype is mimicked by gbf1 knockouts and morphants, suggesting a nature of loss of function. Experimental results in mammalian cells show that the mutant form Gbf1(L1246R) is unable to be recruited to the Golgi apparatus and fails to activate Arf1 for recruiting COPI complex. The hemorrhage in tsu3994 mutants can be prevented partially and temporally by treating with the endoplasmic reticulum stress/apoptosis inhibitor tauroursodeoxycholic acid or by knocking down the proapoptotic gene baxb Therefore, endothelial endoplasmic reticulum stress and subsequent apoptosis induced by gbf1 deficiency may account for the vascular collapse and hemorrhage.


Asunto(s)
Vasos Sanguíneos/fisiopatología , Factores de Intercambio de Guanina Nucleótido/genética , Hemorragia/etiología , Mutación , Pez Cebra/embriología , Animales , Proteína Coat de Complejo I/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transporte de Proteínas
16.
J Mol Cell Biol ; 7(1): 48-61, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25603803

RESUMEN

The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/ß-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFß signaling pathway is involved in pLL development. Here we report a critical role of TGFß1 in regulating morphogenesis of the pLL primordium (pLLP). The tgfß1a gene is abundantly expressed in the lateral line primordium. Knockdown or knockout of tgfß1a leads to a reduction of neuromast number, an increase of inter-neuromast distance, and a reduced number of hair cells. The aberrant morphogenesis in embryos depleted of tgfß1a correlates with the reduced expression of atoh1a, deltaA, and n-cadherin/cdh2, which are known important regulators of the pLLP morphogenesis. Like tgfß1a depletion, knockdown of smad5 that expresses in the pLLP, affects pLLP development whereas overexpression of a constitutive active Smad5 isoform rescues the defects in embryos depleted of tgfß1a, indicating that Smad5 mediates tgfß1a function in pLLP development. Therefore, TGFß/Smad5 signaling plays an important role in the zebrafish lateral line formation.


Asunto(s)
Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Cadherinas/genética , Cadherinas/metabolismo , Diferenciación Celular/genética , Quimiocinas/genética , Quimiocinas/metabolismo , Técnicas de Silenciamiento del Gen , Mutación , Fenotipo , Factor de Crecimiento Transformador beta1/metabolismo , Pez Cebra/embriología
17.
J Biol Chem ; 289(22): 15463-73, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24739389

RESUMEN

Uracil-DNA glycosylase (Ung) is a component of the base excision repair process and has the ability to remove uracil from U:G mispairs in DNA. However, its implications in development of vertebrate embryos are poorly understood. In this study, we found that zebrafish uracil-DNA glycosylase a (Unga) is maternally expressed at high levels and accumulated in nuclei during cleavage and blastulation periods. Knockdown of unga in zebrafish embryos causes an increase of the global DNA methylation level concomitantly with a reduction of overall transcriptional activity in the nucleus, ultimately resulting in embryonic lethality during segmentation period. Conversely, unga overexpression is sufficient to reduce the global DNA methylation level, to increase H3K4me3 and H3K27me3 marks, and to activate genome transcription. Furthermore, overexpression of unga(D132A) mRNA, encoding a mutant Unga without DNA glycosylase activity, does not affect global DNA methylation level, indicating that its involvement in DNA demethylation is dependent on its glycosylase activity. These results together suggest that Unga is implicated in postfertilization genomic DNA demethylation, zygotic gene transcription, and normal embryonic development in zebrafish.


Asunto(s)
Metilación de ADN/fisiología , Embrión no Mamífero/fisiología , Regulación del Desarrollo de la Expresión Génica , Uracil-ADN Glicosidasa/genética , Pez Cebra/genética , Animales , Blastómeros/fisiología , Reprogramación Celular/fisiología , Cromatina/metabolismo , Reparación del ADN/fisiología , Técnicas de Silenciamiento del Gen , Transcripción Genética/fisiología , Transcriptoma , Uracilo/metabolismo , Uracil-ADN Glicosidasa/metabolismo , Pez Cebra/embriología
18.
Yi Chuan ; 35(4): 477-87, 2013 Apr.
Artículo en Chino | MEDLINE | ID: mdl-23659938

RESUMEN

The TGF-ß/Nodal signaling pathway plays an important role in the zebrafish dorsoventral patterning process. To further explore the function and mechanism of this signaling pathway, we identified a set of Smad2/3a interacting proteins by the yeast two-hybrid screen. Rbb4l (Retinoblastoma binding protein 4, like) is one of the identified proteins. Human RBBP4 (Retinoblastoma binding protein 4), the homolog of zebrafish Rbb4l, has been shown to form complexes with other chromatin modifiers, but its roles in embryonic development remain unknown. In this study, we showed that Rbb4l directly interacted with Smad3a and enhances TGF-ß/Nodal signaling. In zebrafish embryos, rbb4l overexpression resulted in an expanded expression of dorsal markers with a reduction of ventral markers expression, suggesting a dorsalizing function. On the contrary, rbb4l knockdown caused ventralized phenotype of the embryos at 24 hours post-fertilization (hpf). Furthermore, a series of rescue experiments showed that rbb4l failed to cause embryonic dorsalization in the absence of Nodal signal. Together, our data suggested that Rbb4l acts as an enhancer of Nodal/Smad2/3 signaling during embryogene-sis, and depends on the existence of Nodal signaling.


Asunto(s)
Embrión no Mamífero/embriología , Proteína Nodal/metabolismo , Proteína 4 de Unión a Retinoblastoma/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína smad3/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Nat Commun ; 4: 1728, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23591895

RESUMEN

Smad2/3-mediated transforming growth factor ß signalling and the Ras-Raf-Mek-Erk cascade have important roles in stem cell and development and tissue homeostasis. However, it remains unknown whether Raf kinases directly crosstalk with Smad2/3 signalling and how this would regulate embryonic development. Here we show that Araf antagonizes mesendoderm induction and patterning activity of Nodal/Smad2 signals in vertebrate embryos by directly inhibiting Smad2 signalling. Knockdown of araf in zebrafish embryos leads to an increase of activated Smad2 with a decrease in linker phosphorylation; consequently, the embryos have excess mesendoderm precursors and are dorsalized. Mechanistically, Araf physically binds to and phosphorylates Smad2 in the linker region with S253 being indispensable in a Mek/Erk-independent manner, thereby attenuating Smad2 signalling by accelerating degradation of activated Smad2. Our findings open avenues for investigating the potential significance of Raf regulation of transforming growth factor ß signalling in versatile biological and pathological processes in the future.


Asunto(s)
Mesodermo/metabolismo , Proteínas Quinasas/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mesodermo/enzimología , Proteína Nodal , Fosforilación , Proteínas Quinasas/genética , Proteína Smad2 , Pez Cebra/embriología
20.
Yi Chuan ; 34(9): 1082-8, 2012 Sep.
Artículo en Chino | MEDLINE | ID: mdl-23017448

RESUMEN

As one of the most important vertebrate model systems, the zebrafish plays increasingly important roles in the field of life sciences. At present, zebrafish is widely used in studies on developmental biology, molecular biology, cell biology, genetics, neurobiology, oncology, immunology, marine biology, pharmacology, toxicology, and environmental protection. The zebrafish-based studies have led to many important discoveries that contribute to the development of modern life sciences. The zebrafish model system was introduced into China in the late 1990s; since then, the Chinese zebrafish community has being expanded fast with more influencing research outcomes, promoting a wide range of disciplines. This review gives an overview of zebrafish-based studies and representative findings in the mainland and Hong Kang of China, aiming to promote wider utilization of zebrafish for high-level studies.


Asunto(s)
Investigación , Pez Cebra/embriología , Pez Cebra/genética , Animales , China , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...