Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39305243

RESUMEN

BACKGROUND: The research on the associations between tissue inhibitors of metalloproteinase-1 (TIMP1) expression and the clinicopathological characteristics and prognosis of patients with gastric cancer (GC) have resulted in contradictory findings. Exploring the associations between TIMP1 and clinicopathological parameters and the prognosis of GC patients is essential. METHODS: We searched the literature in the databases according to the inclusion and exclusion criteria. Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to evaluate the relationships between TIMP1 expression and the clinicopathological parameters and prognosis of GC patients. RESULTS: Nine studies with 1,200 GC patients were included. Our results indicated that TIMP1 expression was not related to sex, age, TNM stage, depth of invasion, lymph node metastasis, or tumor size in GC patients. However, TIMP1 expression was associated with the differentiation of GC. Furthermore, TIMP1 expression was associated with poor prognosis in GC patients. CONCLUSION: TIMP1 expression was related to tumor differentiation and poor prognosis but not sex, age, TNM stage, depth of invasion, lymph node metastasis or tumor size.

2.
Small ; : e2405874, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206598

RESUMEN

Heterogeneous interfacial engineering has garnered widespread attention for optimizing polarization loss and enhancing the performance of electromagnetic wave absorption. A novel Kirkendall effect-assisted electrostatic self-assembly method is employed to construct a metal-organic framework (MOF, MIL-88A) decorated with Ni-Fe layered double hydroxide (LDH), forming a multilayer nano-cage coated with Ti3C2Tx. By modulating the surface adsorption of Ti3C2Tx on LDH, the heterointerfaces in MOF-LDH-MXene ternary composites exhibit excellent interfacial polarization loss. Additionally, the Ni-Fe LDH@Ti3C2Tx nano-cage exhibits a large specific surface area, abundant defects, and a large number of heterojunction structures, resulting in excellent electromagnetic wave absorption performance. The MIL-88A@Ni-Fe LDH@Ti3C2Tx-1.0 nano-cage achieves a reflection loss value of -46.7 dB at a thickness of 1.4 mm and an effective absorption bandwidth of 5.12 GHz at a thickness of 1.8 mm. The heterojunction interface composed of Ni-Fe LDH and Ti3C2Tx helps to enhance polarization loss. Additionally, Ti3C2Tx forms a conductive network on the surface, while the cavity between the MIL-88A core and the Ni-Fe LDH shell facilitates multiple attenuations by increasing the transmission path of internal incident waves. This work may reveal a new structural design of multi-component composites by heterointerfaces engineering for electromagnetic wave absorption.

3.
Ecol Evol ; 14(8): e70126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114168

RESUMEN

To study the interspecific differentiation characteristics of species originating from recent radiation, the genotyping-by-sequencing (GBS) technique was used to explore the kinship, population structure, gene flow, genetic variability, genotype-environment association and selective sweeps of Picea asperata complex with similar phenotypes from a genome-wide perspective. The following results were obtained: 14 populations of P. asperata complex could be divided into 5 clades; P. wilsonii and P. neoveitchii diverged earlier and were more distantly related to the remaining 6 spruce species. Various geological events have promoted the species differentiation of P. asperata complex. There were four instances of gene flow among P. koraiensis, P. meyeri, P. asperata, P. crassifolia and P. mongolica. The population of P. mongolica had the highest level of nucleotide diversity, and P. neoveitchii may have experienced a bottleneck recently. Genotype-environment association found that a total of 20,808 genes were related to the environmental variables, which enhanced the adaptability of spruce in different environments. Genes that were selectively swept in the P. asperata complex were primarily associated with plant stress resistance. Among them were some genes involved in plant growth and development, heat stress, circadian rhythms and flowering. In addition to the commonly selected genes, different spruce species also displayed unique genes subjected to selective sweeps that improved their adaptability to different habitats. Understanding the interspecific gene flow and adaptive evolution of Picea species is beneficial to further understanding the species relationships of spruce and can provide a basis for studying spruce introgression and functional genomics.

4.
Small ; : e2403689, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39128133

RESUMEN

The excellent performance of electromagnetic wave absorbers primarily depends on the coordination among components and the rational design of the structure. In this study, a series of porous fibers with carbon nanotubes uniformly distributed in the shape of pine leaves are prepared through electrospinning technique, one-pot hydrothermal synthesis, and high-temperature catalysis method. The impedance matching of the nanofibers with a porous structure is optimized by incorporating melamine into the spinning solution, as it undergoes gas decomposition during high-temperature calcination. Moreover, the electronic structure can be modulated by controlling the NH4F content in the hydrothermal synthesis process. Ultimately, the Ni/Co/CrN/CNTs-CF specimen (P3C NiCrN12) exhibited superior performance, while achieving a minimum reflection loss (RLmin) of -56.18 dB at a thickness of 2.2 mm and a maximum absorption bandwidth (EABmax) of 5.76 GHz at a thickness of 2.1 mm. This study presents an innovative approach to fabricating lightweight, thin materials with exceptional absorption properties and wide bandwidth by optimizing the three key factors influencing electromagnetic wave absorption performance.

5.
Small ; : e2404449, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011980

RESUMEN

Currently, facing electromagnetic protection requirement under complex aqueous environments, the bacterial reproduction and organic dye corrosion may affect the composition and micro-structures of absorbers to weaken their electromagnetic properties. To address such problems, herein, a series of CoFe2O4@BCNPs (cobalt ferrite @ bio-carbon nanoparticles) composites are synthesized via co-hydrothermal and calcining process. The coupling of magnetic cobalt ferrite and dielectric bio-carbon derived from Apium can endow the composite multiple absorption mechanisms and matched impedance for effective microwave absorption, attaining a bandwidth of 8.12 GHz at 2.36 mm and an intensity of -49.85 dB at 3.0 mm. Due to the ROS (reactive oxygen species) stimulation ability and heavy metal ions of cobalt ferrite, the composite realizes an excellent antibacterial efficiency of 99% against Gram negative bacteria of Escherichia coli. Moreover, the loose porous layer of surface stacked bio-carbon can promote the adsorption of methylene blue for subsequent eliminating, a high removal rate of 90.37% for organic dye can be also achieved. This paper offers a new insight for rational design of composite's component and micro-structure to construct multi-functional microwave absorber for satisfying the electromagnetic protection demand in complicated environments.

6.
Plant Physiol Biochem ; 211: 108724, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744084

RESUMEN

Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.


Asunto(s)
Cadmio , Regulación de la Expresión Génica de las Plantas , Quercus , Estrés Fisiológico , Quercus/metabolismo , Quercus/efectos de los fármacos , Quercus/genética , Cadmio/toxicidad , Cadmio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
7.
BMC Plant Biol ; 24(1): 479, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816690

RESUMEN

The taxonomic classification of Picea meyeri and P. mongolica has long been controversial. To investigate the genetic relatedness, evolutionary history, and population history dynamics of these species, genotyping-by-sequencing (GBS) technology was utilized to acquire whole-genome single nucleotide polymorphism (SNP) markers, which were subsequently used to assess population structure, population dynamics, and adaptive differentiation. Phylogenetic and population structural analyses at the genomic level indicated that although the ancestor of P. mongolica was a hybrid of P. meyeri and P. koraiensis, P. mongolica is an independent Picea species. Additionally, P. mongolica is more closely related to P. meyeri than to P. koraiensis, which is consistent with its geographic distribution. There were up to eight instances of interspecific and intraspecific gene flow between P. meyeri and P. mongolica. The P. meyeri and P. mongolica effective population sizes generally decreased, and Maxent modeling revealed that from the Last Glacial Maximum (LGM) to the present, their habitat areas decreased initially and then increased. However, under future climate scenarios, the habitat areas of both species were projected to decrease, especially under high-emission scenarios, which would place P. mongolica at risk of extinction and in urgent need of protection. Local adaptation has promoted differentiation between P. meyeri and P. mongolica. Genotype‒environment association analysis revealed 96,543 SNPs associated with environmental factors, mainly related to plant adaptations to moisture and temperature. Selective sweeps revealed that the selected genes among P. meyeri, P. mongolica and P. koraiensis are primarily associated in vascular plants with flowering, fruit development, and stress resistance. This research enhances our understanding of Picea species classification and provides a basis for future genetic improvement and species conservation efforts.


Asunto(s)
Genoma de Planta , Picea , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Picea/genética , Filogenia , Flujo Génico , Adaptación Fisiológica/genética , Ecosistema
8.
Mol Cell Biochem ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38819598

RESUMEN

Damage of intestinal barrier function (BF) after ischemia/reperfusion (I/R) injury can induce serious complications and high mortality. MicroRNAs (miRNAs) are involved in intestinal mucosal BF and epithelial proliferation after I/R injury have been reported. We aimed to investigate the role and regulatory mechanism of miR-142-3p (miR-142) in intestinal epithelial proliferation and BF after I/R injury. We detected the proliferation, barrier function and miR-142 expression in clinical ischemic intestinal tissues. Furthermore, we induced an in vivo intestinal I/R injury mouse model and in vitro IEC-6 cells hypoxia/reoxygenation (H/R) injury model. After increasing and decreasing expression of miR-142, we detected the proliferation and barrier function of intestinal epithelial cells after I/R or H/R injury. We found that miR-142 expression was significantly increased in clinical ischemic intestinal mucosa and mouse intestinal mucosa exposed to I/R injury, and there was an inverse relationship between miR-142 and proliferation/BF. Inhibition of miR-142 significant promoted intestinal epithelial proliferation and BF after I/R injury. Furthermore, inhibition of miR-142 improved overall survival rate of mice after I/R injury. MiR-142 directly targeted FoxM1 which was identified by bioinformatics analysis and luciferase activity assay in IEC-6 cells. Inhibition of miR-142 promotes intestinal epithelial proliferation and BF after I/R injury in a FoxM1-mediated manner.

9.
J Coll Physicians Surg Pak ; 34(1): 86-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185967

RESUMEN

Several studies have explored gastrointestinal surgery and the risk of Parkinson's disease (PD), but the results of these studies are still controversial. This meta-analysis aimed to evaluate undergoing gastrointestinal surgery and the risk of PD in patients. PubMed, EMbase, the Cochrane Library, CNKI, and WanFang Data databases were electronically searched to collect studies from inception to 1 March 2023. Stata15.1 software was used to perform meta-analysis of the data. Of 260 references screened, 8 studies involving 9,596,121 people were included eventually. Gastrointestinal surgery had no significant effect on the risk of PD (OR = 1.059, 95% CI: 0.915-1.224, I2 = 90.4%, p = 0.443). Several subgroup analyses showed that the patients with different regions, different surgical locations and different sample sizes after gastrointestinal surgery were not associated with the risk of PD. Furthermore, sensitivity analysis confirmed that the patients after gastrointestinal surgery were not associated with the risk of PD. There was no significant effect of gastrointestinal surgery on the risk of PD, but more studies should be included to confirm this observation. Key Words: Gastrointestinal surgery, Risk factor, Parkinson's disease, Meta-analysis.


Asunto(s)
Procedimientos Quirúrgicos del Sistema Digestivo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Bases de Datos Factuales , Factores de Riesgo , Tamaño de la Muestra
10.
Small ; 20(8): e2305849, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817350

RESUMEN

Layered double hydroxides (LDHs) with unique layered structure and atomic composition are limited in the field of electromagnetic wave absorption (EMA) due to their poor electrical conductivity and lack of dielectric properties. In this study, the EMA performance and anticorrosion of hollow derived LDH composites are improved by temperature control and composition design using ZIF-8 as a sacrifice template. Diverse regulation modes result in different mechanisms for EMA. In the temperature control process, chemical reactions tune the composition of the products and construct a refined structure to optimize the LDHs conductivity loss. Additionally, the different phase interfaces generated by the control components optimize the impedance matching and enhance the interfacial polarization. The results show that the prepared NCZ (Ni3ZnC0.7/Co3ZnC@C) has a minimum reflection loss (RLmin ) of -58.92 dB with a thickness of 2.4 mm and a maximum effective absorption bandwidth (EABmax ) of 7.36 GHz with a thickness of 2.4 mm. Finally, due to its special structure and composition, the sample exhibits excellent anticorrosion properties. This work offers essential knowledge for designing engineering materials derived from metal organic framework (MOF) with cutting-edge components and nanostructures.

11.
Nanomicro Lett ; 16(1): 6, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930594

RESUMEN

Electromagnetic wave (EMW) absorbing materials have an irreplaceable position in the field of military stealth as well as in the field of electromagnetic pollution control. And in order to cope with the complex electromagnetic environment, the design of multifunctional and multiband high efficiency EMW absorbers remains a tremendous challenge. In this work, we designed a three-dimensional porous structure via the salt melt synthesis strategy to optimize the impedance matching of the absorber. Also, through interfacial engineering, a molybdenum carbide transition layer was introduced between the molybdenum selenide nanoparticles and the three-dimensional porous carbon matrix to improve the absorption behavior of the absorber. The analysis indicates that the number and components of the heterogeneous interfaces have a significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction loss introduced by interfacial engineering. Wherein, the prepared MoSe2/MoC/PNC composites showed excellent EMW absorption performance in C, X, and Ku bands, especially exhibiting a reflection loss of - 59.09 dB and an effective absorption bandwidth of 6.96 GHz at 1.9 mm. The coordination between structure and components endows the absorber with strong absorption, broad bandwidth, thin thickness, and multi-frequency absorption characteristics. Remarkably, it can effectively reinforce the marine anticorrosion property of the epoxy resin coating on Q235 steel substrate. This study contributes to a deeper understanding of the relationship between interfacial engineering and the performance of EMW absorbers, and provides a reference for the design of multifunctional, multiband EMW absorption materials.

12.
Plant Sci ; 337: 111874, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37742724

RESUMEN

Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.

13.
Shock ; 60(4): 594-602, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646610

RESUMEN

ABSTRACT: Gut barrier dysfunction caused by intestinal ischemia/reperfusion (I/R) injury is associated with substantial death and morbidity. In this research, the role of microRNAs (miRNAs) in regulating intestinal I/R injury was investigated. We used miRNA sequencing to analyze clinical ischemic and normal intestinal samples. Through bioinformatics analysis based on sequencing results, we found that upregulated miRNAs inhibited epithelial barrier function and cell proliferation, with miR-379-5p being the most significantly upregulated in the ischemic intestine. Further studies confirmed the role of miR-379-5p through experiments in the human ischemic intestine, the mouse I/R injury model in vivo , and cell hypoxia/reoxygenation models in vitro . Inhibiting miR-379-5p increased epithelial cell proliferation and improved barrier function after I/R injury. We also identified eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) as a downstream target gene of miR-379-5p through bioinformatics prediction and experimental verification. The findings suggest that inhibiting miR-379-5p could improve intestinal epithelial cell proliferation and barrier function by targeting EIF4G2. The goal of this study was to find a potential target for treating I/R injury in the intestine, as well as to prevent and mitigate the damage caused.


Asunto(s)
MicroARNs , Daño por Reperfusión , Animales , Humanos , Ratones , Apoptosis , Proliferación Celular/genética , Modelos Animales de Enfermedad , Factor 4G Eucariótico de Iniciación , Isquemia , MicroARNs/genética , Recuperación de la Función , Reperfusión , Daño por Reperfusión/genética
14.
Small ; 19(52): e2304932, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37635102

RESUMEN

Reasonable composition design and controllable structure are effective strategies for harmonic electromagnetic wave (EMW) adsorption of multi-component composites. On this basis, the hybrid MoS2 /CoS2 /VN multilayer structure with the triple heterogeneous interface is prepared by simple stirring hydrothermal, which can satisfy the synergistic interaction between different components and obtain excellent EMW absorption performance. Due to the presence of multiple heterogeneous interfaces, MoS2 /CoS2 /VN composites will produce strong interfacial polarization, while the defects in the sample will become the center of polarization, resulting in dipole polarization. Due to the excellent structural design of MoS2 /CoS2 /VN composite material, MoS2 /CoS2 /VN composite material not only has good conductive loss and polarization loss, but also can maintain excellent stability in simulated seawater, and enhance corrosion resistance. The MoS2 /CoS2 /VN composite with dual functions of corrosion resistant and microwave absorption achieves a minimum reflection loss (RL) of -50.48 dB and an effective absorption bandwidth of up to 5.76 GHz, covering both the X-band and Ku-band. Finally, this study provides a strong reference for the development of EMW absorption materials based on transition metal nitrides.

15.
Nanomicro Lett ; 15(1): 204, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624447

RESUMEN

The development of wearable multifunctional electromagnetic protective fabrics with multifunctional, low cost, and high efficiency remains a challenge. Here, inspired by the unique flower branch shape of "Thunberg's meadowsweet" in nature, a nanofibrous composite membrane with hierarchical structure was constructed. Integrating sophisticated 0D@2D@1D hierarchical structures with multiple heterointerfaces can fully unleash the multifunctional application potential of composite membrane. The targeted induction method was used to precisely regulate the formation site and morphology of the metal-organic framework precursor, and intelligently integrate multiple heterostructures to enhance dielectric polarization, which improves the impedance matching and loss mechanisms of the electromagnetic wave absorbing materials. Due to the synergistic enhancement of electrospinning-derived carbon nanofiber "stems", MOF-derived carbon nanosheet "petals" and transition metal selenide nano-particle "stamens", the CoxSey/NiSe@CNSs@CNFs (CNCC) composite membrane obtains a minimum reflection loss value (RLmin) of -68.40 dB at 2.6 mm and a maximum effective absorption bandwidth (EAB) of 8.88 GHz at a thin thickness of 2.0 mm with a filling amount of only 5 wt%. In addition, the multi-component and hierarchical heterostructure endow the fibrous membrane with excellent flexibility, water resistance, thermal management, and other multifunctional properties. This work provides unique perspectives for the precise design and rational application of multifunctional fabrics.

16.
Pharm Biol ; 61(1): 1310-1317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37621064

RESUMEN

CONTEXT: (-)-Epigallocatechin-3-gallate (EGCG) is involved in cell proliferation and ischemia/reperfusion (I/R) injury of several organs. OBJECTIVE: To identify the role of EGCG in intestinal epithelial proliferation and barrier exposed to I/R injury. MATERIAL AND METHODS: Fifty Sprague-Dawley rats were divided into sham, I/R, I/R + EGCG (12.5 mg/kg), I/R + EGCG (25 mg/kg) and I/R + EGCG (50 mg/kg). I/R group rats were subjected to intestinal ischemia for 1 h and 6 h reperfusion. The rats were supplemented with EGCG 12.5, 25 and 50 mg/kg daily for 3 days via intraperitoneal injection before surgery. We used IEC-6 to expose to hypoxia/reoxygenation (H/R) injury to mimic I/R in vivo. IEC-6 cells were divided into control, H/R and H/R + EGCG (40 µmol/L). The effects of EGCG and its mechanism was explored. RESULTS: Pharmacological treatment with EGCG notably improves intestinal epithelial proliferation (12.5 mg/kg, 1.74-fold; 25 mg/kg, 2.93-fold, and 50 mg/kg, 4.33-fold) and barrier function after I/R injury. EGCG promoted cell proliferation (2.99-fold) and increased the expression of occludin (2.36-fold) and ZO-1 (1.64-fold) in IEC-6 cells after H/R injury. EGCG promoted proliferation of IEC-6 cells with ED50 values of 18.16 µmol/L. Further investigations indicated that EGCG activated Nurr1 expression in intestine after I/R injury. EGCG promote cell proliferation and increased the expression of occludin and ZO-1 in IEC-6 cells after H/R injury were abrogated in the knockdown of Nurr1 by siRNA. DISCUSSION AND CONCLUSION: Our findings indicate that EGCG promotes intestinal epithelial cell proliferation and barrier function after I/R injury in vitro and in vivo via activation of Nurr1.


Asunto(s)
Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Daño por Reperfusión , Animales , Ratas , Proliferación Celular , Intestinos , Isquemia , Ocludina , Ratas Sprague-Dawley , Daño por Reperfusión/tratamiento farmacológico , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo
17.
Front Plant Sci ; 14: 1201553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528988

RESUMEN

In woody plants, bark is an important protective tissue which can participate in photosynthesis, manage water loss, and transport assimilates. Studying the bark anatomical traits can provide insight into plant environmental adaptation strategies. However, a systematic understanding of the variability in bark anatomical traits and their drivers is lacking in woody plants. In this study, the bark anatomical traits of 23 Picea species were determined in a common garden experiment. We analyzed interspecific differences and interpreted the patterns in bark anatomical traits in relation to phylogenetic relationships and climatic factors of each species according to its global distribution. The results showed that there were interspecific differences in bark anatomical traits of Picea species. Phloem thickness was positively correlated with parenchyma cell size, possibly related to the roles of parenchyma cells in the radial transport of assimilates. Sieve cell size was negatively correlated with the radial diameter of resin ducts, and differences in sieve cells were possibly related to the formation and expansion of resin ducts. There were no significant phylogenetic signals for any bark anatomical trait, except the tangential diameter of resin ducts. Phloem thickness and parenchyma cell size were affected by temperature-related factors of their native range, while sieve cell size was influenced by precipitation-related factors. Bark anatomical traits were not significantly different under wet and dry climates. This study makes an important contribution to our understanding of variability in bark anatomical traits among Picea species and their ecological adaptations.

18.
Front Plant Sci ; 14: 1192371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37496863

RESUMEN

Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5'-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants.

19.
Plants (Basel) ; 12(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37176812

RESUMEN

The effects of tree age on the growth of cutting seedlings propagated from ancient trees have been an important issue in plant breeding and cultivation. In order to understand seedling growth and stress resistance stability, phenotypic measurements, physiological assays, and high-throughput transcriptome sequencing were performed on sown seedlings propagated from 5-year-old donors and cutting seedlings propagated from 5-, 300-, and 700-year-old Platycladus orientalis donors. In this study, the growth of cutting seedlings propagated from ancient trees was significantly slower; the soluble sugar and chlorophyll contents gradually decreased with the increase in the age of donors, and the flavonoid and total phenolic contents of sown seedlings were higher than those of cutting seedlings. Enrichment analysis of differential genes showed that plant hormone signal transduction, the plant-pathogen interaction, and the flavone and flavonol biosynthesis pathways were significantly up-regulated with the increasing age of cutting seedlings propagated from 300- and 700-year-old donors. A total of 104,764 differentially expressed genes were calculated using weighted gene co-expression network analysis, and 8 gene modules were obtained. Further, 10 hub genes in the blue module were identified, which revealed that the expression levels of JAZ, FLS, RPM1/RPS3, CML, and RPS2 increased with the increase in tree age. The results demonstrated that the age of the donors seriously affected the growth of P. orientalis cutting seedlings and that cutting propagation can preserve the resistance of ancient trees. The results of this study provide important insights into the effects of age on asexually propagated seedlings, reveal potential molecular mechanisms, and contribute to an improvement in the level of breeding and conservation of ancient germplasm resources of P. orientalis trees.

20.
Nanomicro Lett ; 15(1): 137, 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37245198

RESUMEN

Although multifunctional aerogels are expected to be used in applications such as portable electronic devices, it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure. Herein, a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties, superhydrophobicity, and self-cleaning by water-induced NiCo-MOF self-assembly. Specifically, the impedance matching of the three-dimensional (3D) structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption. As a result, the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm. Due to the presence of hydrophobic functional groups, CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles > 140°. This multifunctional aerogel has promising applications in electromagnetic wave absorption, resistance to water or humid environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA