Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1413666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873425

RESUMEN

Introduction: Ulcerative colitis (UC) is marked by recurring inflammation. Existing treatments are ineffective and may have toxic side effects. Thus, new therapeutic agents are urgently needed. We studied the botanical formula "Li-Hong Tang (LHT)", which contains two main ingredients, Salvia plebeia R. Br and Rhodiola crenulata (Hook. f. et Thoms.) H. Ohba. In this study, we aimed to identify the effects of LHT on UC and explore its potential mechanism. Methods: LHT was analyzed using a mass spectrometer (MS). DSS at a dose of 2.5% was utilized to develop UC in mice. The administered groups received low, medium, and high dosages (0.32 g/kg, 0.64 g/kg, and 1.28 g/kg) of LHT and the positive medication, sulfasalazine (0.2 g/kg), respectively. Body weight, disease activity index (DAI) score, colon length, spleen index, serum myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD) and inflammatory factor concentrations were monitored. The expression of NRF2 and HO-1 in colonic tissues was evaluated by immunohistochemistry. 16S rDNA sequencing was employed to investigate alterations in the gut microbiota of the mice, aiming to elucidate the extent of LHT's impact. Results: LHT may ameliorate DSS-induced colitis in mice by lowering inflammation, reducing oxidative stress, restoring the intestinal barrier, and influencing the NRF2/HO-1 pathway. Moreover, LHT treatment exhibited a regulatory effect on the gut microbiota, characterized by elevated levels of Patescibacteria, Verrucomicrobiota, Candidatus_Saccharimonas, Lactobacillus, and Ligilactobacillus levels while decreasing Oscillibacter and Colidextribacter levels. Further study indicated that MPO, NO, and inflammatory factors were positively correlated with Oscillibacter, Colidextribacter, Escherichia-Shigella, Anaerostines, and negatively with Lactobacillus, Clostridiales_unclassified, Candidatus_Saccharimonas, and Patescibacteria. Furthermore, colony network analysis revealed that Lactobacillus was negatively associated with Oscillibacter and Colidextribacter, whereas Oscillibacter was positively related to Colidextribacter. Conclusion: LHT protects against DSS-induced mice by inhibiting the inflammatory response, oxidative stress, and mucosal injury. The protective role may involve regulating the NRF2/HO-1 signaling pathway and gut microbiota.

2.
Int Immunopharmacol ; 136: 112359, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815348

RESUMEN

While Interleukin 2 (IL2) has the capability to activate both NK and T cells robustly, its limited in vivo half-life, considerable toxicity, and tendency to boost Treg cells pose significant challenges, restricting its widespread application in cancer therapy. In this investigation, we engineered a novel IL2 variant (IL2-4M-PEG) with reduced CD25 binding activity and an extended half-life by substituting amino acids associated with CD25 binding and implementing site-directed PEGylation. IL2-4M-PEG notably amplifies effector cells over Treg cells. Furthermore, our findings reveal that IL2-4M-PEG, characterized by an extended half-life, exhibits anti-tumor effects in a mouse model. Consequently, this innovative IL2 holds the potential for enhancing combined cancer therapies in the future.


Asunto(s)
Inmunoterapia , Subunidad alfa del Receptor de Interleucina-2 , Interleucina-2 , Polietilenglicoles , Animales , Interleucina-2/metabolismo , Polietilenglicoles/química , Inmunoterapia/métodos , Humanos , Ratones , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Línea Celular Tumoral , Neoplasias/terapia , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Unión Proteica , Ratones Endogámicos C57BL , Femenino , Ratones Endogámicos BALB C , Células Asesinas Naturales/inmunología
3.
Phytomedicine ; 128: 155378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507851

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a type of immune-mediated condition associated with intestinal homeostasis. Our preliminary studies disclosed that Cichorium intybus L., a traditional medicinal plant, also known as Chicory in Western countries, contained substantial phenolic acids displaying significant anti-inflammatory activities. We recognized the potential of harnessing Chicory for the treatment of IBD, prompting a need for in-depth investigation into the underlying mechanisms. METHODS: On the third day, mice were given 100, 200 mg/kg of total phenolic acids (PA) from Chicory and 200 mg/kg of sulfasalazine (SASP) via gavage, while dextran sodium sulfate (DSS) concentration was 2.5 % for one week. The study measured and evaluated various health markers including body weight, disease activity index (DAI), colon length, spleen index, histological score, serum concentrations of myeloperoxidase (MPO), nitric oxide (NO), superoxide dismutase (SOD), lipid oxidation (MDA), and inflammatory factors. We evaluated the TRP family and the NLRP3 inflammatory signaling pathways by Western blot, while 16S rDNA sequencing was used to track the effects of PA on gut microbes. RESULTS: It was shown that PA ameliorated the weight loss trend, attenuated inflammatory damage, regulated oxidative stress levels, and repaired the intestinal barrier in DSS mice. Analyses of Western blots demonstrated that PA suppressed what was expressed of transient receptor potential family TRPV4, TRPA1, and the expression of NLRP3 inflammatory signaling pathway, NLRP3 and GSDMD. In addition, PA exerted therapeutic effects on IBD by regulating gut microbiota richness and diversity. Meanwhile, the result of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis showed that gut microbiota was mainly related to Membrane Transport, Replication and Repair, Carbohydrate Metabolism and Amino Acid Metabolism. CONCLUSION: PA derived from Chicory may have therapeutic effects on IBD by regulating the TRPV4/NLRP3 signaling pathway and gut microbiome. This study provides new insights into the effects of phenolic acids from Chicory on TRP ion channels and gut microbiota, revealing previously unexplored modes of action.


Asunto(s)
Cichorium intybus , Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , Hidroxibenzoatos , Raíces de Plantas , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Cichorium intybus/química , Transducción de Señal/efectos de los fármacos , Hidroxibenzoatos/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Raíces de Plantas/química , Masculino , Ratones , Antiinflamatorios/farmacología , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/metabolismo , Extractos Vegetales/farmacología , Sulfasalazina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inducido químicamente , Canales Catiónicos TRPV/metabolismo
4.
J Agric Food Chem ; 71(40): 14649-14665, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755883

RESUMEN

In this study, blueberry (Vaccinium ssp.) anthocyanins (VA) and blackberry (Rubus L.) anthocyanins (RA) were used to investigate the effects on metabolic syndrome (MetS) and the potential mechanisms. Importantly, all of the data presented in this study were obtained from experiments conducted on mice. As a result, VA and RA reduced body weight gain and fat accumulation while improving liver damage, inflammation, glucose, and lipid metabolism induced by a high-fat diet. Moreover, VA and RA regulated the gut microbiota composition, decreasing the pro-obesity and proinflammation bacteria taxa, such as the phylum Actinobacterium and the genera Allobaculum and Bifidobacterium, and increasing those negatively associated with obesity and inflammation, such as the phylum Bacteroidetes and the genera Prevotella and Oscillospira. Additionally, the supplementation with VA and RA reversed the elevated levels of valeric, caproic, and isovaleric acids observed in the high-fat diet (HFD) group, bringing them closer to the levels observed in the Chow group. This reversal indicated that alterations in the composition and abundance of gut microbiota may contribute to the restoration of short-chain fatty acids (SCFAs) levels. Additionally, PICRUSt2 exhibited that cyanamino acid metabolism and betalain biosynthesis might be the major metabolic pathways in the HVA group compared with the HFD group, while in the HRA group, it was the phosphotransferase system. These findings suggest that VA and RA can ameliorate MetS by modulating the gut microbiota and production of SCFAs.

5.
J Agric Food Chem ; 71(18): 7046-7057, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37113100

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a worldwide prevalent chronic liver disease characterized by hepatic steatosis. Water caltrop, the fruit of Trapa natan, is widely cultivated as an edible vegetable in Asian countries. In China, water caltrop pericarp has long been used as a functional food to treat metabolic syndrome, yet the bioactive substances and their pharmacological mechanisms remain unclear. In this study, a natural gallotannin, 1,2,3,6-tetra-O-galloyl-ß-D-glucopyranoside (GA), was isolated from water caltrop pericarp and evaluated for its therapeutic effect on NAFLD. Treatment of GA (15 and 30 mg/kg/day) suppressed the body weight gain (p < 0.001) and ameliorated lipid deposition (p < 0.001) in high-fat diet (HFD)-induced NAFLD mice. GA was able to alleviate HFD-induced insulin resistance (p < 0.001), oxidative stress (p < 0.001), and inflammation (p < 0.001), thereby restoring the liver function in HFD-induced NAFLD mice. Mechanistically, GA diminished the aberrant signaling pathways including AMPK/SREBP/ACC, IRs-1/Akt, IKK/IκB/NF-κB in HFD-induced NAFLD mice and modified gut microbiota dysbiosis in these mice as well. The current findings suggest that GA is a promising novel agent for NAFLD therapy.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hígado/metabolismo , Taninos Hidrolizables/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos , Taninos/metabolismo , Ratones Endogámicos C57BL
6.
Adv Drug Deliv Rev ; 196: 114774, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36906231

RESUMEN

The gut is a fundamental organ in controlling human health. Recently, researches showed that substances in the intestine can alter the course of many diseases through the intestinal epithelium, especially intestinal flora and exogenously ingested plant vesicles that can be transported over long distances to various organs. This article reviews the current knowledge on extracellular vesicles in modulating gut homeostasis, inflammatory response and numerous metabolic disease that share obesity as a co-morbidity. These complex systemic diseases that are difficult to cure, but can be managed by some bacterial and plant vesicles. Vesicles, due to their digestive stability and modifiable properties, have emerged as novel and targeted drug delivery vehicles for effective treatment of metabolic diseases.


Asunto(s)
Vesículas Extracelulares , Microbioma Gastrointestinal , Enfermedades Metabólicas , Síndrome Metabólico , Microbiota , Humanos , Síndrome Metabólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico
7.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38203542

RESUMEN

The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells. The concentrations of total reactive oxygen species (ROS) and mitochondrial ROS in A549 cells induced by CSE significantly increased. Moreover, CSE caused a notable elevation of intracellular Ca2+ levels in A549 cells. Importantly, Lut exhibited inhibitory effects on the inward flow of Ca2+ and attenuated the overproduction of mitochondrial and intracellular ROS in A549 cells treated with CSE. In conclusion, Lut demonstrated a protective role in alleviating oxidative stress and inflammation in CS + LPS-induced COPD mice and CSE-treated A549 cells by regulating TRPV1/SIRT6 and CYP2A13/NRF2 signaling pathways.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Sirtuinas , Animales , Ratones , Luteolina , Factor 2 Relacionado con NF-E2 , Especies Reactivas de Oxígeno , Lipopolisacáridos , Sistema Enzimático del Citocromo P-450 , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/etiología , Estrés Oxidativo , Glicosiltransferasas , Transducción de Señal , Canales Catiónicos TRPV
8.
Heliyon ; 8(12): e12126, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561668

RESUMEN

Loquat leaf is approved to be beneficial in the treatment of diabetes. Total sesquiterpene glycosides (TSG), a major chemical component cluster, has potential ability to improve insulin-resistant diabetes syndrome. Its therapeutic mechanism using metabolomics in vivo is worth to be investigated. This study aimed to reveal the underlying therapeutic mechanism of TSG on insulin-resistant mice by untargeted metabolomics, and to explore the lipid metabolism differences in vivo. High-fat diet was used to induce insulin-resistant mice model. Biochemical indicators were applied to evaluate the model validity and related treatment effect. Ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry was utilized to accomplish serum and urine untargeted metabolomics. Oral administration of TSG had a therapeutic effect on high-fat diet induced insulin-resistant mice. Four hundred forty-two metabolites in serum and 1732 metabolites in urine were annotated. Principal component analysis screened 324 differential metabolic signatures in serum sample and 1408 in urine sample. The pathway mainly involved purine metabolism and biosynthesis of unsaturated fatty acids. Lipidomic analysis of urine and serum confirmed that most lipid metabolites were fatty acyls, sterol lipids and polyketides.

9.
J Agric Food Chem ; 70(41): 13279-13288, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36198678

RESUMEN

In the present study, we demonstrated that whether the gut microbiota and related metabolites contribute to the therapeutic effect of total sesquiterpenoids (TSs) from loquat leaves on obesity. A 4-week high fat diet was used to induce obesity which was then treated with TSs for another 4 weeks. TSs remarkedly reduced the weight of body and white adipose and the levels of total cholesterol (TC) and triglyceride (TG) in serum. We also found that TSs restored the diversity and richness of gut microbiota. In addition, TSs administration affected the relative abundance of seven key genera. Meanwhile, TSs were determined to affect the metabolism of the host through detecting the metabolites in feces. By applying KEGG and the correlation analysis with gut microbiota, 10 differential metabolites were identified to be the key. The results in this work proved that TSs inhibited obesity by remodeling gut microbiota and related metabolites.


Asunto(s)
Eriobotrya , Obesidad , Hojas de la Planta , Sesquiterpenos , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Eriobotrya/química , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/etiología , Obesidad/prevención & control , Hojas de la Planta/química , Sesquiterpenos/farmacología , Triglicéridos/sangre , Animales , Ratones , Ratones Endogámicos C57BL
10.
Phytochemistry ; 203: 113377, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988742

RESUMEN

Cichorium intybus L. (Asteraceae), belonging to the tribe Cichorieae of the family Asteraceae, has a long history as an edible and medicinal food. Sesquiterpene lactones are commonly considered as its major active constituents. In the current study, five unreported sesquiterpene lactones, including one 12,8-guaianolide and four 12,6-guaianolides were isolated from C. intybus roots, as well as 16 known analogues. The planar structures and relative configurations of these compounds were elucidated by extensive spectroscopic analysis. The absolute configurations were determined by the time-dependent density functional theory (TDDFT)-based electronic circular dichroism (ECD) calculation method. Bioassay results showed that seven of the isolates exhibited remarkable NO production inhibitory activity in LPS-stimulated RAW264.7 macrophages, with IC50 values ranging from 1.83 to 38.81 µM. Some of them can significantly decrease the secretion of inflammatory cytokines (TNF-α and IL-6). Cytotoxicity assays demonstrated that intybusins B, as well as four known compounds, displayed obvious inhibitory activities against four human tumor cells, with IC50 values ranging from 9.01 to 27.07 µM.


Asunto(s)
Antineoplásicos , Asteraceae , Cichorium intybus , Sesquiterpenos , Antiinflamatorios/farmacología , Asteraceae/química , Humanos , Interleucina-6 , Lactonas/química , Lactonas/farmacología , Lipopolisacáridos/farmacología , Estructura Molecular , Fitoquímicos/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología , Factor de Necrosis Tumoral alfa
11.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35806399

RESUMEN

Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Insuficiencia Renal Crónica , Animales , Ratones , Diarilheptanoides , Dieta Alta en Grasa/efectos adversos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal
12.
J Agric Food Chem ; 70(9): 2923-2935, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35195395

RESUMEN

As the main factor in the pathogenesis of chronic kidney disease (CKD), the excessive apoptosis of renal tubular epithelial cells (RTECs) and its underlying mechanism of action are worth further investigation. Chicoric acid (CA), a major active constituent of the Uyghur folk medicine chicory, was recorded to possess a renal protective effect. The precise effect of CA on renal tubular injury in obesity-related CKD remains unknown. In the current study, CA was proven to ameliorate metabolic disorders including overweight, hyperglycemia, hyperlipidemia, and hyperuricemia in high fat diet (HFD)-fed mice. Furthermore, the reverse effect of CA on renal histological changes and functional damage was confirmed. In vitro, the alleviation of lipid accumulation and cell apoptosis was observed in palmitic acid (PA)-exposed HK2 cells. Treatment with CA reduced mitochondrial damage and oxidative stress in the renal tubule of HFD-fed mice and PA-treated HK2 cells. Finally, CA was observed to activate the Nrf2 pathway; increase PINK and Parkin expression; and regulate LC3, SQSTM1, Mfn2, and FIS1 expression; therefore, it would improve mitochondrial dynamics and mitophagy to alleviate mitochondrial damage in RTECs of obesity-related CKD. These results may provide fresh insights into the promotion of mitophagy in the prevention and alleviation of obesity-related CKD.


Asunto(s)
Hiperuricemia , Insuficiencia Renal Crónica , Animales , Ácidos Cafeicos , Dieta Alta en Grasa/efectos adversos , Hiperuricemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Succinatos , Ubiquitina-Proteína Ligasas/metabolismo
13.
Food Funct ; 13(3): 1519-1534, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35072186

RESUMEN

According to ancient records, loquat leaf has been used as both a food and medicine in China for thousands of years. Sesquiterpene glycosides from loquat leaf have achieved remarkable effects on hyperglycemia. However, their specific activities and underlying mechanisms on type 2 diabetes mellitus (T2DM) are not fully understood. In the present study, we found that SG1, a unique sesquiterpene glycoside isolated from loquat leaf, had the capability to prevent insulin resistance and inflammation. In db/db mice, SG1 administration (25 and 50 mg kg-1 day-1) inhibited hyperglycemia and the release of inflammatory cytokines. To further explore the possible role of gut microbiota in SG1 for treating T2DM, we applied 16S rRNA pyrosequencing based on the V3-V4 region to analyze the fecal samples of different groups. Alpha diversity analysis showed that SG1 administration could obviously increase diversity and richness in db/db mice. At the phylum level, due to SG1 treatment, the relative abundance of Firmicutes and Actinobacteria was lowered while that of Bacteroidetes was raised. Additionally, 7 key genera in the db/db mice with SG1 supplementation were enriched: Lactobacillus, Lachnospiraceae_NK4A136_group, and Ruminococcus, Bacteroides, Prevotellaceae_UCG-001, Alistipes, and Roseburia. These findings proved that SG1 could prevent T2DM by relieving insulin resistance and inflammation and by remodeling the gut microbiota in db/db mice.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Eriobotrya , Glicósidos/farmacología , Hipoglucemiantes/farmacología , Sesquiterpenos/farmacología , Animales , Glucemia , Alimentos Funcionales , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Hojas de la Planta
14.
J Sci Food Agric ; 102(6): 2342-2351, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34625980

RESUMEN

BACKGROUND: Water caltrop (Trapa natans L.) is widely cultivated as a popular vegetable or fruit in Asian countries. In China, water caltrop pericarp is also used as a functional food to treat metabolic syndrome. However, the profiling of bioactive substances and their pharmacological activities in different water caltrop varieties remains to be investigated. In the present study, three varieties of water caltrop pericarps collected from 13 origins in China were analyzed for their phenolic substances. To investigate the pharmacological activities, samples were tested for their free radical scavenging capacity and inhibitory potency against α-glucosidase and pancreatic lipase. RESULTS: In total, 46 phenolic compounds were identified in the ethanol extract of water caltrop pericarp using a liquid chromatography-quadrupole time of flight-tandem mass spectrometry method, most of which were hydrolyzable tannins. Two cultivated varieties samples exhibited a relatively higher phenolic content and stronger antioxidant and inhibitory activities against α-glucosidase and pancreatic lipase compared to those from the wild variety. Correlation analysis between phenolic contents and biological activities suggested that phenolic compounds exhibited potential free radical scavenging capacity, α-glucosidase and pancreatic lipase inhibitory activities. CONCLUSION: It is concluded that the phenolic compounds of water caltrop pericarp are promising sources of natural antioxidants, α-glucosidase and pancreatic lipase inhibitors. © 2021 Society of Chemical Industry.


Asunto(s)
Antioxidantes , Agua , Antioxidantes/química , Frutas/química , Fenoles/química , Extractos Vegetales/química , Agua/análisis , alfa-Glucosidasas/química
15.
Oxid Med Cell Longev ; 2021: 4706410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745416

RESUMEN

Loquat (Eriobotrya japonica Lindl.), a subtropical fruit tree native to Asia, is not only known to be nutritive but also beneficial for the treatment of diabetes in the south of China. To expand its development, this study was undertaken concerning the potential therapeutic role of total sesquiterpene glycosides (TSGs) from loquat leaves in insulin resistance (IR), the major causative factor of type 2 diabetes mellitus (T2DM). Male C57BL/6 mice were fed on high-fat diet (HFD) to induce IR and then were given TSG by oral administration at 25 and 100 mg/kg/day, respectively. TSG notably improved metabolic parameters including body weight, serum glucose, and insulin levels and prevented hepatic injury. Moreover, inflammatory response and oxidative stress were found to be remarkably alleviated in IR mice with TSG supplement. Further research in liver of IR mice demonstrated that TSG repaired the signalings of insulin receptor substrate-1 (IRS-1)/glucose transporter member 4 (GLUT4) and AMP-activated protein kinase (AMPK), which improved glucose and lipid metabolism and prevented lipid accumulation in liver. It was also observed that TSG suppressed the expression of transient receptor potential vanilloid 1 (TRPV1), whereas the signaling pathway of sirtuin-6 (SIRT6)/nuclear factor erythroid 2-related factor 2 (Nrf2) was significantly promoted. Based on the results, the current study demonstrated that TSG from loquat leaves potentially ameliorated IR in vivo by enhancing IRS-1/GLUT4 signaling and AMPK activation and modulating TRPV1 and SIRT6/Nrf2 signaling pathways.


Asunto(s)
Dieta Alta en Grasa , Eriobotrya/química , Regulación de la Expresión Génica/efectos de los fármacos , Glicósidos/farmacocinética , Hiperglucemia/prevención & control , Hiperlipidemias/prevención & control , Resistencia a la Insulina , Animales , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Hiperglucemia/etiología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Hiperlipidemias/etiología , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Extractos Vegetales/farmacología , Hojas de la Planta , Sesquiterpenos/farmacología , Sirtuinas/genética , Sirtuinas/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
16.
J Agric Food Chem ; 69(47): 14176-14191, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783554

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is strongly associated with type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides from loquat leaf achieved beneficial effects on metabolic syndromes such as NAFLD and diabetes; however, their specific activity and underlying mechanism on T2DM-associated NAFLD have not yet been fully understood. In the present study, we found that sesquiterpene glycoside 3 (SG3), a novel sesquiterpene glycoside isolated from loquat leaf, was able to prevent insulin resistance (IR), oxidative stress, and inflammation. In db/db mice, SG3 administration (25 and 50 mg/kg/day) inhibited obesity, hyperglycemia, and the release of inflammatory cytokines. SG3 (5 and 10 µM) also significantly alleviated hepatic lipid accumulation, oxidative stress, and inflammatory response induced by high glucose combined with oleic acid in HepG2 cells. Western blotting analysis showed that these effects were related to repair the abnormal insulin signaling and inhibit the cytochrome P450 2E1 (CYP2E1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3), both in vivo and in vitro. In addition, SG3 treatment could decrease the ratio of Firmicutes/Bacteroidetes and increase the relative abundance of Lachnospiraceae, Muribaculaceae, and Lactobacillaceae after a high-throughput pyrosequencing of 16S rRNA to observe the changes of related gut microbial composition in db/db mice. These findings proved that SG3 could protect against NAFLD in T2DM by improving IR, oxidative stress, inflammation through regulating insulin signaling and inhibiting CYP2E1/NLRP3 pathways, and remodeling the mouse gut microbiome. It is suggested that SG3 could be considered as a new functional additive for a healthy diet.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Sesquiterpenos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glicósidos/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , ARN Ribosómico 16S , Sesquiterpenos/metabolismo
17.
Oxid Med Cell Longev ; 2020: 9734560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204402

RESUMEN

This study examines the effects of chicoric acid (CA) on nonalcoholic fatty liver disease (NAFLD) in high-fat-diet- (HFD-) fed C57BL/6 mice. CA treatment decreased body weight and white adipose weight, mitigated hyperglycemia and dyslipidemia, and reduced hepatic steatosis in HFD-fed mice. Moreover, CA treatment reversed HFD-induced oxidative stress and inflammation both systemically and locally in the liver, evidenced by the decreased serum malondialdehyde (MDA) abundance, increased serum superoxide dismutase (SOD) activity, lowered in situ reactive oxygen species (ROS) in the liver, decreased serum and hepatic inflammatory cytokine levels, and reduced hepatic inflammatory cell infiltration in HFD-fed mice. In addition, CA significantly reduced lipid accumulation and oxidative stress in palmitic acid- (PA-) treated HepG2 cells. In particular, we identified AMPK as an activator of Nrf2 and an inactivator of NFκB. CA upregulated AMPK phosphorylation, the nuclear protein level of Nrf2, and downregulated NFκB protein level both in HFD mice and PA-treated HepG2 cells. Notably, AMPK inhibitor compound C blocked the regulation of Nrf2 and NFκB, as well as ROS overproduction mediated by CA in PA-treated HepG2 cells, while AMPK activator AICAR mimicked the effects of CA. Similarly, Nrf2 inhibitor ML385 partly blocked the regulation of antioxidative genes and ROS overproduction by CA in PA-treated HepG2 cells. Interestingly, high-throughput pyrosequencing of 16S rRNA suggested that CA could increase Firmicutes-to-Bacteroidetes ratio and modify gut microbial composition towards a healthier microbial profile. In summary, CA plays a preventative role in the amelioration of oxidative stress and inflammation via the AMPK/Nrf2/NFκB signaling pathway and shapes gut microbiota in HFD-induced NAFLD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Succinatos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Animales , Inhibidores de Integrasa VIH/farmacología , Células Hep G2 , Humanos , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo , Transducción de Señal
18.
PeerJ ; 8: e10413, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240683

RESUMEN

Insulin resistance (IR), caused by impaired insulin signal and decreased insulin sensitivity, is generally responsible for the pathophysiology of type 2 diabetes mellitus (T2DM). Sesquiterpene glycosides (SGs), the exclusive natural products from loquat leaf, have been regarded as potential lead compounds owing to their high efficacy in hypoglycemia and hypolipidemia. Here, we evaluated the beneficial effects of four single SGs isolated from loquat leaf, including SG1, SG2, SG3 and one novel compound SG4 against palmitic acid-induced insulin resistance in HepG2 cells. SG1, SG3 and SG4 could significantly enhance glucose uptake of insulin-resistant HepG2 cells at non-cytotoxic concentration. Meanwhile, Oil Red O staining showed the decrease of both total cholesterol and triglyceride content, suggesting the amelioration of lipid accumulation by SGs in insulin-resistant HepG2 cells. Further investigations found that the expression levels of phosphorylated AMPK, ACC, IRS-1, and Akt were significantly up-regulated after SGs treatment, on the contrary, the expression levels of SREBP-1 and FAS were significantly down-regulated. Notably, AMPK inhibitor Compound C (CC) blocked the regulative effects, while AMPK activator AICAR mimicked the effects of SGs in PA-treated insulin-resistant HepG2 cells. In conclusion, SGs (SG4>SG1≈SG3>SG2) improved lipid accumulation in insulin-resistant HepG2 cells through the AMPK signaling pathway.

19.
Food Funct ; 11(4): 3516-3526, 2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32253400

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a chronic, progressive lung disease with few successful treatments, and is strongly associated with cigarette smoking (CS). Since the novel coronavirus has spread worldwide seriously, there is growing concern that patients who have chronic respiratory conditions like COPD can easily be infected and are more prone to having severe illness and even mortality because of lung dysfunction. Loquat leaves have long been used as an important material for both pharmaceutical and functional applications in the treatment of lung disease in Asia, especially in China and Japan. Total flavonoids (TF), the main active components derived from loquat leaves, showed remarkable anti-inflammatory and antioxidant activities. However, their protective activity against CS-induced COPD airway inflammation and oxidative stress and its underlying mechanism still remain not well-understood. The present study uses a CS-induced mouse model to estimate the morphological changes in lung tissue. The results demonstrated that TF suppressed the histological changes in the lungs of CS-challenged mice, as evidenced by reduced generation of pro-inflammatory cytokines including interleukin 6 (IL-6), IL-1ß, tumor necrosis factor α (TNF-α), nitric oxide (NO), and inducible nitric oxide synthase (iNOS) and diminished the protein expression of transient receptor potential vanilloid 1 (TRPV1). Moreover, TF also inhibited phosphorylation of IKK, IκB and NFκB and increased p-Akt. Interestingly, TF could inhibit CS-induced oxidative stress in the lungs of COPD mice. TF treatment significantly inhibited the level of malondialdehyde (MDA) and increased the activity of superoxide dismutase (SOD). In addition, TF markedly downregulated TRPV1 and cytochrome P450 2E1 (CYP2E1) and upregulated the expression of SOD-2, while the p-JNK level was observed to be inhibited in COPD mice. Taken together, our findings showed that the protective effect and putative mechanism of the action of TF resulted in the inhibition of inflammation and oxidative stress through the regulation of TRPV1 and the related signal pathway in lung tissues. It suggested that TF derived from loquat leaves could be considered to be an alternative or a new functional material and used for the treatment of CS-induced COPD.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Medicamentos Herbarios Chinos/administración & dosificación , Eriobotrya/química , Flavonoides/administración & dosificación , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Canales Catiónicos TRPV/inmunología , Animales , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/inmunología , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Transducción de Señal/efectos de los fármacos , Humo/efectos adversos , Superóxido Dismutasa/genética , Superóxido Dismutasa/inmunología , Canales Catiónicos TRPV/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-32215040

RESUMEN

Acori Tatarinowii Rhizome (ATR, the dried rhizome of Acorus tatarinowii Schott), a well-recognized traditional Chinese herbal medicine, is prescribed to treat neurological disorders. The essential oil is considered as the active fraction of ATR, and the neuroprotection of ATR essential oil (ATEO) is proven, including the protection against oxidative stress. However, the cellular mechanism of ATEO against oxidative stress has not been fully illustrated. In this study, to investigate the cellular mechanism of ATEO, the cytoprotective effect of ATEO against H2O2-induced injury was revealed in PC12 cells. ATEO treatment increased the viability of cells affected by H2O2-mediated injury, inhibited reactive oxygen species (ROS) accumulation, and induced the expression of several antioxidant proteins (SODs, GPx, and UCPs). The cytoprotective effect of ATEO was related to upregulation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression, which was counteracted by PGC-1α specific knockdown. Using inhibitor of protein kinase A (PKA), we found that cAMP-response element binding protein (CREB) activation was involved in ATEO-induced PGC-1α expression. Taken together, we suggest that ATEO effectively prevents H2O2-induced cell injury possibly through the activation of CREB/PGC-1α signaling in PC12 cells. The results provide a molecular insight into the effect of ATEO on cytoprotection against oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...