Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.058
1.
Plant Cell Environ ; 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38847345

Shoot branching from axillary bud (AB) directly determines plant architecture. However, the mechanism through which AB remains dormant or emerges to form branches as plants grow remains largely unknown. Here, the auxin-strigolactone (IAA-SL) pathway was first shown to regulate shoot branching in poplar, and we found that PagKNAT2/6b could modulate this pathway. PagKNAT2/6b was expressed mainly in the shoot apical meristem and AB and was induced by shoot apex damage. PagKNAT2/6b overexpressing poplar plants (PagKNAT2/6b OE) exhibited multiple branches that mimicked the branching phenotype of nontransgenic plants after decapitation treatment, while compared with nontransgenic controls, PagKNAT2/6b antisense transgenic poplar and Pagknat2/6b mutant lines exhibited a significantly decreased number of branches after shoot apex damage treatment. In addition, we found that PagKNAT2/6b directly inhibits the expression of the key IAA synthesis gene PagYUC6a, which is specifically expressed in the shoot apex. Moreover, overexpression of PagYUC6a in the PagKNAT2/6b OE background reduced the number of branches after shoot apex damage treatment. Overall, we conclude that PagKNAT2/6b responds to shoot apical injury and regulates shoot branching through the IAA-SL pathway. These findings may provide a theoretical basis and candidate genes for genetic engineering to create new forest tree species with different crown types.

2.
Opt Express ; 32(8): 14860-14875, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38859421

In contrast to the current athermal map's lack of intuitiveness, we introduce a novel composite athermal map to visually evaluate the potential of lens system glass materials in achieving athermal and achromatic designs. Furthermore, unlike graphically manual methods for athermalization, we propose an automatic method to athermalize the optical system by glass selection using simulated annealing with memory augmentation (GlaSAM). This method employs a comprehensive objective function that integrates thermal aberration, chromatic aberration, secondary spectrum aberration, and Petzval curvature aberration. Weight factors are introduced to evaluate each aberration in the function, and filters are applied to streamline the search space. Additionally, the augmentation of memory into the optimization algorithm not only enhances its efficiency but also safeguards against overlooking solutions with superior imaging quality. To test the advantage of the GlaSAM method, a complex telephoto design is optimized to function across a temperature range from -40°C to 70°C, and the results demonstrate the efficacy of athermalizing the lens system while preserving exceptional imaging performance through this proposed method.

3.
Theor Appl Genet ; 137(7): 147, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38834870

KEY MESSAGE: Major QTL for grain number per spike were identified on chromosomes 2B and 2D. Haplotypes and candidate genes of QGns.cib-2B.1 were analyzed. Grain number per spike (GNS) is one of the main components of wheat yield. Genetic dissection of their regulatory factors is essential to improve the yield potential. In present study, a recombinant inbred line population comprising 180 lines developed from the cross between a high GNS line W7268 and a cultivar Chuanyu12 was employed to identify quantitative trait loci (QTL) associated with GNS across six environments. Two major QTL, QGns.cib-2B.1 and QGns.cib-2D.1, were detected in at least four environments with the phenotypic variations of 12.99-27.07% and 8.50-13.79%, respectively. And significant interactions were observed between the two major QTL. In addition, QGns.cib-2B.1 is a QTL cluster for GNS, grain number per spikelet and fertile tiller number, and they were validated in different genetic backgrounds using Kompetitive Allele Specific PCR (KASP) markers. QGns.cib-2B.1 showed pleotropic effects on other yield-related traits including plant height, spike length, and spikelet number per spike, but did not significantly affect thousand grain weight which suggested that it might be potentially applicable in breeding program. Comparison analysis suggested that QGns.cib-2B.1 might be a novel QTL. Furthermore, haplotype analysis of QGns.cib-2B.1 indicated that it is a hot spot of artificial selection during wheat improvement. Based on the expression patterns, gene annotation, orthologs analysis and sequence variations, the candidate genes of QGns.cib-2B.1 were predicted. Collectively, the major QTL and KASP markers reported here provided a wealth of information for the genetic basis of GNS and grain yield improvement.


Chromosome Mapping , Chromosomes, Plant , Haplotypes , Phenotype , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/growth & development , Chromosomes, Plant/genetics , Chromosome Mapping/methods , Genetic Markers , Edible Grain/genetics , Edible Grain/growth & development , Seeds/growth & development , Seeds/genetics , Plant Breeding , Alleles , Genes, Plant
4.
Bioorg Med Chem Lett ; : 129822, 2024 May 30.
Article En | MEDLINE | ID: mdl-38823728

The quest for novel antibacterial agents is imperative in the face of escalating antibiotic resistance. Naturally occurring tetrahydro-ß-carboline (THßC) alkaloids have been highlighted due to their significant biological derivatives. However, these structures have been little explored for antibacterial drugs development. In this study, a series of 1,2,3,4-THßC derivatives were synthesized and assessed for their antibacterial prowess against both gram-positive and gram-negative bacteria. The compounds exhibited moderate to good antibacterial activity, with some compounds showing superior efficacy against gram-positive bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), to that of Gentamicin. Among these analogs, compound 3k emerged as a hit compound, demonstrating rapid bactericidal action and a significant post-antibacterial effect, with significant cytotoxicity towards human LO2 and HepG2 cells. In addition, compound 3k (10 mg/kg) showed comparable anti-MRSA efficacy to Ciprofloxacin (2 mg/kg) in a mouse model of abdominal infection. Overall, the present findings suggested that THßC derivatives based on the title compounds hold promising applications in the development of antibacterial drugs.

5.
Chin Med ; 19(1): 83, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38862981

BACKGROUND: Respiratory syncytial virus (RSV)-induced lung inflammation is one of the main causes of hospitalization and easily causes disruption of intestinal homeostasis in infants, thereby resulting in a negative impact on their development. However, the current clinical drugs are not satisfactory. Zedoary turmeric oil injection (ZTOI), a patented traditional Chinese medicine (TCM), has been used for clinical management of inflammatory diseases. However, its in vivo efficacy against RSV-induced lung inflammation and the underlying mechanism remain unclear. PURPOSE: The present study was designed to confirm the in vivo efficacy of ZTOI against lung inflammation and intestinal disorders in RSV-infected young mice and to explore the potential mechanism. STUDY DESIGN AND METHODS: Lung inflammation was induced by RSV, and cytokine antibody arrays were used to clarify the effectiveness of ZTOI in RSV pneumonia. Subsequently, key therapeutic targets of ZTOI against RSV pneumonia were identified through multi-factor detection and further confirmed. The potential therapeutic material basis of ZTOI in target tissues was determined by non-target mass spectrometry. After confirming that the pharmacological substances of ZTOI can reach the intestine, we used 16S rRNA-sequencing technology to study the effect of ZTOI on the intestinal bacteria. RESULTS: In the RSV-induced mouse lung inflammation model, ZTOI significantly reduced the levels of serum myeloperoxidase, serum amyloid A, C-reactive protein, and thymic stromal lymphoprotein; inhibited the mRNA expression of IL-10 and IL-6; and decreased pathological changes in the lungs. Immunofluorescence and qPCR experiments showed that ZTOI reduced RSV load in the lungs. According to cytokine antibody arrays, platelet factor 4 (PF4), a weak chemotactic factor mainly synthesized by megakaryocytes, showed a concentration-dependent change in lung tissues affected by ZTOI, which could be the key target for ZTOI to exert anti-inflammatory effects. Additionally, sesquiterpenes were enriched in the lungs and intestines, thereby exerting anti-inflammatory and regulatory effects on gut microbiota. CONCLUSION: ZTOI can protect from lung inflammation via PF4 and regulate gut microbiota disorder in RSV-infected young mice by sesquiterpenes, which provides reference for its clinical application in RSV-induced lung diseases.

6.
Chaos ; 34(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38838105

This study examines the role of periodic information, the mechanism of influence, stochastic resonance, and its controllable analysis in complex corporate financial systems. A stochastic predator-prey complex corporate financial system model driven by periodic information is proposed. Additionally, we introduce signal power amplification to quantify the stochastic resonance phenomenon and develop a method for analyzing stochastic resonance in financial predator-prey dynamics within complex corporate financial systems. We optimize a simplified integral calculation method to enhance the proposed model's performance, which demonstrates superiority over benchmark models based on empirical evidence. Based on stochastic simulations and numerical calculations, we can observe multiple stochastic and multiple inverse stochastic resonances. Furthermore, variations in initial financial information, periodic information frequency, and corporate growth capacity induced stochastic resonance and inverse stochastic resonance. These variations also led to state transitions between the two resonance behaviors, indicating transition phenomena. These findings suggest the potential for regulating and controlling stochastic and inverse stochastic resonance in complex corporate finance, enabling controllable stochastic resonance behaviors.

7.
Ther Adv Drug Saf ; 15: 20420986241258049, 2024.
Article En | MEDLINE | ID: mdl-38881538

Background: Cefuroxime has played a crucial role in the prevention and treatment of bacterial infections. However, the differences in adverse events across formulations and routes remain unclear. Objectives: This study aimed to investigate the post-marketing safety of cefuroxime, particularly concerning formulations and routes. Design: A retrospective pharmacovigilance study of cefuroxime was conducted using the data from Food and Drug Administration Adverse Event Reporting System database. Methods: The clinical characteristics and concomitant drugs reported with cefuroxime were investigated. Adverse event signals of cefuroxime were identified based on four disproportionality algorithms. The signal differences of cefuroxime across formulations and routes were further examined. Results: A total of 1810 adverse event reports associated with cefuroxime were identified, and 181 cefuroxime-associated signals were detected. Compared with tablets, injections were more likely to cause preferred terms 'blood pressure decreased' and 'anaphylactic shock'. In addition, system organ class 'eye disorders' significantly increased when cefuroxime was administered intraocularly, underscoring the importance of exercising caution regarding ocular toxicity. Conclusion: The adverse events associated with cefuroxime were significantly different across formulations and routes, which deserve special attention in clinical use.


Background: Cefuroxime is a commonly used antibiotic. This study investigated the safety of cefuroxime using Food and Drug Administration Adverse Event Reporting System database. Research design and methods: We analyzed the clinical characteristics and concomitant drugs reported with cefuroxime. Then, we detected the signals of cefuroxime. We further examined the signal differences of cefuroxime across formulations and routes. Results: We retrieved 1810 reports and identified 181 signals associated with cefuroxime. In comparison to tablets, injections had a higher likelihood of causing decreased blood pressure and anaphylactic shock. Furthermore, the administration of cefuroxime intraocularly increased the possibility of experiencing eye disorders. Conclusion: The signals associated with cefuroxime were significantly different across formulations and routes, which deserve special attention in clinical use.


Post-marketing safety concerns with cefuroxime.

8.
J Hazard Mater ; 475: 134889, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38878436

Both polycyclic aromatic hydrocarbons (PAHs) and heavy metals persist in the environment and are toxic to organisms. Their co-occurrence makes any of them difficult to remove during bioremediation and poses challenges to environmental management and public health. Microorganisms capable of effectively degrading PAHs and detoxifying heavy metals concurrently are required to improve the bioremediation process. In this study, we isolated a new strain, Sphingobium sp. SJ10-10, from an abandoned coking plant and demonstrated its capability to simultaneously degrade 92.6 % of 75 mg/L phenanthrene and reduce 90 % of 3.5 mg/L hexavalent chromium [Cr(VI)] within 1.5 days. Strain SJ10-10 encodes Rieske non-heme iron ring-hydroxylating oxygenases (RHOs) to initiate PAH degradation. Additionally, a not-yet-reported protein referred to as Sphingobium chromate reductase (SchR), with low sequence identity to known chromate reductases, was identified to reduce Cr(VI). SchR is distributed across different genera and can be classified into two classes: one from Sphingobium members and the other from non-Sphingobium species. The widespread presence of SchR in those RHO-containing Sphingobium members suggests that they are excellent candidates for bioremediation. In summary, our study demonstrates the simultaneous removal of PAHs and Cr(VI) by strain SJ10-10 and provides valuable insights into microbial strategies for managing complex pollutant mixtures.

9.
IEEE Trans Pattern Anal Mach Intell ; 46(6): 4129-4146, 2024 Jun.
Article En | MEDLINE | ID: mdl-38713562

Visual object tracking often employs a multi-stage pipeline of feature extraction, target information integration, and bounding box estimation. To simplify this pipeline and unify the process of feature extraction and target information integration, in this paper, we present a compact tracking framework, termed as MixFormer, built upon transformers. Our core design is to utilize the flexibility of attention operations, and we propose a Mixed Attention Module (MAM) for simultaneous feature extraction and target information integration. This synchronous modeling scheme allows us to extract target-specific discriminative features and perform extensive communication between target and search area. Based on MAM, we build our MixFormer trackers simply by stacking multiple MAMs and placing a localization head on top. Specifically, we instantiate two types of MixFormer trackers, a hierarchical tracker MixCvT, and a non-hierarchical simple tracker MixViT. For these two trackers, we investigate a series of pre-training methods and uncover the different behaviors between supervised pre-training and self-supervised pre-training in our MixFormer trackers. We also extend the masked autoencoder pre-training to our MixFormer trackers and design the new competitive TrackMAE pre-training technique. Finally, to handle multiple target templates during online tracking, we devise an asymmetric attention scheme in MAM to reduce computational cost, and propose an effective score prediction module to select high-quality templates. Our MixFormer trackers set a new state-of-the-art performance on seven tracking benchmarks, including LaSOT, TrackingNet, VOT2020, GOT-10 k, OTB100, TOTB and UAV123. In particular, our MixViT-L achieves AUC scores of 73.3% on LaSOT, 86.1% on TrackingNet and 82.8% on TOTB.

10.
Sci Rep ; 14(1): 11388, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762672

Capmatinib is a potent selective mesenchymal-epithelial transition inhibitor approved in 2020 for the treatment of metastatic non-small cell lung cancer. As real-world evidence is very limited, this study evaluated capmatinib-induced adverse events through data mining of the FDA Adverse Event Reporting System database. Four disproportionality analysis methods were employed to quantify the signals of capmatinib-related adverse events. The difference in capmatinib-associated adverse event signals was further investigated with respect to sex, age, weight, dose, onset time, continent, and concomitant drug. A total of 1518 reports and 4278 adverse events induced by capmatinib were identified. New significant adverse event signals emerged, such as dysphagia, dehydration, deafness, vocal cord paralysis, muscle disorder, and oesophageal stenosis. Notably, higher risk of alanine aminotransferase and aspartate aminotransferase increases were observed in females, especially when capmatinib was combined with immune checkpoint inhibitors. Compared with Europeans and Asians, Americans were more likely to experience peripheral swelling, especially in people > 65 years of age. Renal impairment and increased blood creatinine were more likely to occur with single doses above 400 mg and in Asians. This study improves the understanding of safety profile of capmatinib.


Adverse Drug Reaction Reporting Systems , Benzamides , Pharmacovigilance , United States Food and Drug Administration , Humans , Male , Female , United States , Middle Aged , Aged , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Benzamides/adverse effects , Benzamides/therapeutic use , Adult , Triazines/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Aged, 80 and over , Young Adult , Lung Neoplasms/drug therapy , Adolescent , Imidazoles
11.
Burns Trauma ; 12: tkae006, 2024.
Article En | MEDLINE | ID: mdl-38716051

Septic shock is a severe form of sepsis characterized by high global mortality rates and significant heritability. Clinicians have long been perplexed by the differential expression of genes, which poses challenges for early diagnosis and prompt treatment of septic shock. Genetic polymorphisms play crucial roles in determining susceptibility to, mortality from, and the prognosis of septic shock. Research indicates that pathogenic genes are known to cause septic shock through specific alleles, and protective genes have been shown to confer beneficial effects on affected individuals. Despite the existence of many biomarkers linked to septic shock, their clinical use remains limited. Therefore, further investigation is needed to identify specific biomarkers that can facilitate early prevention, diagnosis and risk stratification. Septic shock is closely associated with multiple signaling pathways, including the toll-like receptor 2/toll-like receptor 4, tumor necrosis factor-α, phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor κB, Janus kinase/signal transducer and activator of transcription, mammalian target of rapamycin, NOD-like receptor thermal protein domain-associated protein 3 and hypoxia-induced-factor-1 pathways. Understanding the regulation of these signaling pathways may lead to the identification of therapeutic targets for the development of novel drugs to treat sepsis or septic shock. In conclusion, identifying differential gene expression during the development of septic shock allows physicians to stratify patients according to risk at an early stage. Furthermore, auxiliary examinations can assist physicians in identifying therapeutic targets within relevant signaling pathways, facilitating early diagnosis and treatment, reducing mortality and improving the prognosis of septic shock patients. Although there has been significant progress in studying the genetic polymorphisms, specific biomarkers and signaling pathways involved in septic shock, the journey toward their clinical application and widespread implementation still lies ahead.

12.
One Health ; 18: 100743, 2024 Jun.
Article En | MEDLINE | ID: mdl-38725962

Background: In December 2015, the World Health Organization, the World Animal Health Organization, and the Food and Agriculture Organization of the United Nations convened the International Congress on the elimination of rabies in Geneva. How to use epidemiological factors of post-exposure prophylaxis to prevent rabies has become the focus of attention. Objective: To analyze the epidemiological characteristics of 9772 patients with rabies in a four-year period in one hospital, to clarify the outbreak law of rabies and to explore the corresponding prevention and control strategies. Methods: The epidemiological data of rabies patients were collected from the infectious disease reporting information management system of the hospital from July 2018 to June 2022. The distributional characteristics of 13 influencing factors were analyzed using the chi-square test and linear regression. Results: There was a significant correlation between the number of wounds and age, and the numbers of female and male patients were close. People over the age of 44 were more likely to get bites or scratches on their lower extremity (P<0.0001). There was a greater possibility for elderly people to be bitten by dogs (P<0.0001). Dogs preferred to bite or scratch lower limbs (P<0.0001), while cats upper limbs (P<0.0001). Upper limbs were more possibly attacked by animals at home (P<0.0001). There were significant correlations among exposure grade, wound treatment and number of wounds. Conclusions: Lower extremity protection is needed for the elderly and when encountering dogs, and more attention needs to be paid to the upper extremities when encountering cats and household pets, as well as pets that are cute but need to be protected from bites or scratches.

13.
Ecotoxicol Environ Saf ; 278: 116417, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38701655

Cadmium (Cd) pollutes 7.0 % of China's land area. This study examined the potential of Houttuynia cordata for Cd phytoremediation because of its ability to accumulate Cd in its growth matrix. H. cordata were planted in plastic pots filled with paddy field soils having low (LCd), medium (MCd), and high (HCd) Cd levels of 0.19, 0.69, and 2.91 mg/kg, respectively. After six months of growth, harvested plant parts were evaluated for Cd uptake and tolerance mechanisms. Metabolomics and metagenomics approaches were employed to investigate the soil rhizosphere mechanism. Results showed that the average plant biomass increased as soil Cd increased. The biomass Cd contents surpassed the allowable Cd limits for food (≤ 0.2 mg/kg) and medicinal uses (≤ 0.3 mg/kg). Cd contents were higher in H. cordata roots (30.59-86.27 mg/kg) than in other plant parts (0.63-2.90 mg/kg), with significantly increasing values as Cd soil level increased. Phenolic acids, lipids, amino acids and derivatives, organic acids, and alkaloids comprised the majority (69 in MCd vs HCd and 73 % in LCd vs HCd) of the shared upregulated metabolites. In addition, 13 metabolites specific to H. cordata root exudates were significantly increased. The top two principal metabolic pathways were arginine and proline metabolism, and beta-alanine metabolism. H. cordata increased the abundance of Firmicutes and Glomeromycota across all three Cd levels, and also stimulated the growth of Patescibacteria, Rozellomycota, and Claroideoglomus in HCd. Accordingly, H. cordata demonstrated potential for remediation of Cd-contaminated soils, and safety measures for its production and food use must be highly considered.


Biodegradation, Environmental , Cadmium , Houttuynia , Rhizosphere , Soil Pollutants , Cadmium/metabolism , Cadmium/analysis , Soil Pollutants/metabolism , China , Plant Roots/metabolism , Soil/chemistry , Biomass
14.
Curr Microbiol ; 81(7): 168, 2024 May 11.
Article En | MEDLINE | ID: mdl-38733376

In 2018, Nouioui et al. proposed that Bifidobacterium coryneforme was a later synonym of Bifidobacterium indicum on the basis of the digital DNA-DNA hybridization (dDDH) value (85.0%) between B. coryneforme LMG 18911T and B. indicum LMG 11587T. However, in the study of Scardovi et al. (1970), the type strains of B. indicum and B. coryneforme only exhibited 60% DNA-DNA hybridization value. In the present study, the genomes of B. coryneforme CGMCC 1.2279T, B. coryneforme JCM 5819T, B. indicum JCM 1302T, B. indicum CGMCC 1.2275T, B. indicum DSM 20214T, B. indicum LMG 27437T, B. indicum ATCC 25912T, B. indicum KCTC 3230T, B. indicum CCUG 34985T, were sequenced, and the taxonomic relationship between B. coryneforme and B. indicum was re-evaluated. On the basis of the results presented here, (i) ATCC 25912 and DSM 20214 deposited by Vittorio Scardovi are two different strains; (ii) the type strain of B. indicum is ATCC 25912T (= JCM 1302T = LMG 27437T = CGMCC 1.2275T = KCTC 3230T), and not DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587); (iii) B. coryneforme and B. indicum represent two different species of the genus Bifidobacterium; (iv) strain DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587) belongs to B. coryneforme.


Bifidobacterium , DNA, Bacterial , Genome, Bacterial , Phylogeny , Bifidobacterium/genetics , Bifidobacterium/classification , Bifidobacterium/isolation & purification , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Bacterial Typing Techniques , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
15.
J Hazard Mater ; 473: 134587, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38772107

One of the factors influencing the behavior of arsenic (As) in environment is microbial-mediated As transformation. However, the detailed regulatory role of gene expression on the changes of root exudation, rhizosphere microorganisms, and soil As occurrence forms remains unclear. In this study, we evidence that loss-of-function of OsSAUR2 gene, a member of the SMALL AUXIN-UP RNA family in rice, results in significantly higher As uptake in roots but greatly lower As accumulation in grains via affecting the expression of OsLsi1, OsLsi2 in roots and OsABCC1 in stems. Further, the alteration of OsSAUR2 expression extensively affects the metabolomic of root exudation, and thereby leading to the variations in the composition of rhizosphere microbial communities in rice. The microbial community in the rhizosphere of Ossaur2 plants strongly immobilizes the occurrence forms of As in soil. Interestingly, Homovanillic acid (HA) and 3-Coumaric acid (CA), two differential metabolites screened from root exudation, can facilitate soil iron reduction, enhance As bioavailability, and stimulate As uptake and accumulation in rice. These findings add our further understanding in the relationship of OsSAUR2 expression with the release of root exudation and rhizosphere microbial assembly under As stress in rice, and provide potential rice genetic resources and root exudation in phytoremediation of As-contaminated paddy soil.


Arsenic , Oryza , Plant Roots , Rhizosphere , Soil Microbiology , Soil Pollutants , Oryza/metabolism , Oryza/microbiology , Arsenic/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Soil Pollutants/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics , Biological Availability , Microbiota
16.
Article En | MEDLINE | ID: mdl-38805027

Strain S30A2T, isolated from the acid mine drainage sediment of Mengzi Copper Mine, Yunnan, is proposed to represent a novel species of the sulphur-oxidizing genus Acidithiobacillus. Cells were Gram-stain-negative, non-endospore forming, highly motile with one or two monopolar flagella and rod-shaped. The strain was mesophilic, growing at 30-50 °C (optimum, 38 °C), acidophilic, growing at pH 2.0-4.5 (optimum, pH 2.5), and tolerant of 0-4 % (w/v; 684 mol l-1) NaCl. The 16S rRNA gene-based sequence analysis showed that strain S30A2T belongs to the genus Acidithiobacillus and shows the largest similarity of 96.6 % to the type strain Acidithiobacillus caldus KUT. The genomic DNA G+C content of strain S30A2T was 59.25 mol%. The average nucleotide identity ANIb and ANIm values between strain S30A2T and A. caldus KUT were 70.95 and 89.78 %, respectively and the digital DNA-DNA hybridization value was 24.9 %. Strain S30A2T was strictly aerobic and could utilize elementary sulphur and tetrathionate to support chemolithotrophic growth. The major cellular fatty acid of S30A2T was C19 : 1ω7c. The respiratory quinones were ubiquinone-8 and ubiquinone-7. Based upon its phylogenetic, genetic, phenotypic, physiologic and chemotaxonomic characteristics, strain S30A2T is considered to represent a novel species of the genus Acidithiobacillus, for which the name Acidithiobacillus acidisediminis sp. nov. is proposed. The type strain is S30A2T (=CGMCC 1.17059T=KCTC 72580T).


Acidithiobacillus , Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Geologic Sediments , Mining , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Sulfur , RNA, Ribosomal, 16S/genetics , Sulfur/metabolism , DNA, Bacterial/genetics , Fatty Acids/analysis , Geologic Sediments/microbiology , Acidithiobacillus/classification , Acidithiobacillus/genetics , Acidithiobacillus/isolation & purification , China , Oxidation-Reduction , Chemoautotrophic Growth , Ubiquinone , Copper/metabolism
17.
Plant Cell Environ ; 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38679901

Plant JASMONATE ZIM-DOMAIN (JAZ) genes play crucial roles in regulating the biosynthesis of specialized metabolites and stressful responses. However, understanding of JAZs controlling these biological processes lags due to numerous JAZ copies. Here, we found that two leaf-specific CwJAZ4/9 genes from Curcuma wenyujin are strongly induced by methyl-jasmonate (MeJA) and negatively correlated with terpenoid biosynthesis. Yeast two-hybrid, luciferase complementation imaging and in vitro pull-down assays confirmed that CwJAZ4/9 proteins interact with CwMYC2 to form the CwJAZ4/9-CwMYC2 regulatory cascade. Furthermore, transgenic hairy roots showed that CwJAZ4/9 acts as repressors of MeJA-induced terpenoid biosynthesis by inhibiting the terpenoid pathway and jasmonate response, thus reducing terpenoid accumulation. In addition, we revealed that CwJAZ4/9 decreases salt sensitivity and sustains the growth of hairy roots under salt stress by suppressing the salt-mediated jasmonate responses. Transcriptome analysis for MeJA-mediated transgenic hairy root lines further confirmed that CwJAZ4/9 negatively regulates the terpenoid pathway genes and massively alters the expression of genes related to salt stress signaling and responses, and crosstalks of multiple phytohormones. Altogether, our results establish a genetic framework to understand how CwJAZ4/9 inhibits terpenoid biosynthesis and confers salt tolerance, which provides a potential strategy for producing high-value pharmaceutical terpenoids and improving resistant C. wenyujin varieties by a genetic approach.

18.
RSC Med Chem ; 15(4): 1198-1209, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38665835

Ferroptosis is a nonapoptotic, iron-catalyzed form of regulated cell death. It has been shown that high glucose (HG) could induce ferroptosis in vascular endothelial cells (VECs), consequently contributing to the development of various diseases. This study synthesized and evaluated a series of novel ferrostatin-1 (Fer-1) derivatives fused with a benzohydrazide moiety to prevent HG-induced VEC ferroptosis. Several promising compounds showed similar or improved inhibitory effects compared to positive control Fer-1. The most effective candidate 12 exhibited better protection against erastin-induced ferroptosis and high glucose-induced ferroptosis in VECs. Mechanistic studies revealed that compound 12 prevented mitochondrial damage, reduced intracellular ROS accumulation, upregulated the expression of GPX4, and decreased the amounts of ferrous ion, LPO and MDA in VECs. However, compound 12 still exhibited undesirable microsomal stability like Fer-1, suggesting the need for further optimization. Overall, the present findings highlight ferroptosis inhibitor 12 as a potential lead compound for treating ferroptosis-associated vascular diseases.

19.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Article En | MEDLINE | ID: mdl-38608329

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Cell Survival , Cyclohexylamines , Drug Design , Ferroptosis , Human Umbilical Vein Endothelial Cells , Piperazines , Humans , Ferroptosis/drug effects , Piperazines/pharmacology , Piperazines/chemical synthesis , Piperazines/chemistry , Human Umbilical Vein Endothelial Cells/drug effects , Structure-Activity Relationship , Cyclohexylamines/pharmacology , Cyclohexylamines/chemistry , Cyclohexylamines/chemical synthesis , Cell Survival/drug effects , Molecular Structure , Phenylenediamines/pharmacology , Phenylenediamines/chemistry , Phenylenediamines/chemical synthesis , Dose-Response Relationship, Drug , Reactive Oxygen Species/metabolism , Ferrous Compounds/pharmacology , Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Membrane Potential, Mitochondrial/drug effects
20.
J Mol Model ; 30(4): 116, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38561503

INTRODUCTION: The electronic and optical properties of ß-Ga2O3 have been investigated by CASTEP using first principles. It is found that ß-Ga2O3 has an indirect band gap and the conduction band base is located at the Γ point. The stability of ß-Ga2O3 is demonstrated by the calculation of elastic constants, and the ductility of ß-Ga2O3 is demonstrated by the ratio of Poisson's ratio to shear modulus. The optical property analysis shows that ß-Ga2O3 has a high absorption capacity in the ultraviolet region, but a low absorption capacity in visible and infrared light. CONTEXT: The structure, optical, and electronic properties of ß-Ga2O3 are calculated and analyzed based on first-principles calculation. The optimized structures of ß-Ga2O3 are in good agreement with previously studied. In this paper, the elastic, electronic, and optical properties of ß-Ga2O3 are calculated. METHODS: The CASTEP code was employed to execute these calculations in the present work, where the exchange-correlation interactions were treated in the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional in the geometry optimizations and electronic and elastic properties.

...