Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Total Environ ; 904: 166976, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37704153

Cement kiln co-processing is becoming the main strategy to dispose of hazardous waste containing Cr. A newly-discovered pentavalent Cr compound, which was proved to be formed during cement kiln co-processing of solid waste, is partly responsible for the water-soluble Cr released from the cement. However, the formation characteristics and the solubility of Cr(V) are still unclear to date. In this study, the reaction kinetics and further redox reactions of Cr(V) at high temperature were examined, and its crystal structure and solubility were also explored. At the temperature range of 1000-1200 °C, the formation rate of Ca5(CrO4)3O0.5 reached over 90 % within 10 min, and then slowly increased to near 100 % from 10 min to 10 h. shows that Ca5(CrO4)3O0.5 is formed by interface reaction at an early period, and by diffusion at a later period. The kinetic analysis indicates that Ca5(CrO4)3O0.5 is initially formed through an interface reaction and subsequently through diffusion. Ca5(CrO4)3O0.5 was identified and assigned as hexagonal crystal group (P63/m). Approximately 0.55 g and 0.15 g of Ca5(CrO4)3O0.5 dissolve in neutral water at 100 °C and 50 °C, and the concentrations of Cr(V) in water reach 550 and 150 mg/L, respectively. Additionally, this study finds that at the temperature range of 400-700 °C Ca5(CrO4)3O0.5 can be oxidized into CaCrO4, and at the temperature higher than 1400 °C, it can be further converted into Ca3(CrO4)2 and reduced into CaCr2O4. This study gives a deep insight into Cr oxidation-reduction reaction during thermal treatment of solid waste. These insights provide a comprehensive understanding of Cr oxidation-reduction reactions during the thermal treatment of solid waste, offering valuable guidance for waste management strategies.

2.
Proc Natl Acad Sci U S A ; 120(28): e2302907120, 2023 Jul 11.
Article En | MEDLINE | ID: mdl-37399425

Millifluidics, the manipulation of liquid flow in millimeter-sized channels, has been a revolutionary concept in chemical processing and engineering. The solid channels that contain the liquids, though, are not flexible in their design and modification, and prevent contact with the external environment. All-liquid constructs, on the other hand, while flexible and open, are imbedded in a liquid environment. Here, we provide a route to circumvent these limitations by encasing the liquids in a hydrophobic powder in air that jams on the surface, containing and isolating flowing fluids, offering flexibility and adaptability in design, as manifest in the ability to reconfigure, graft, and segment the constructs. Along with the open nature of these powder-contained channels that allow arbitrary connections/disconnections and substance addition/extraction, numerous applications can be opened in the biological, chemical, and material arenas.

3.
Environ Res ; 204(Pt D): 112356, 2022 03.
Article En | MEDLINE | ID: mdl-34822857

Solid solutions of (AlxCr1-x)2O3 and (FexCr1-x)2O3 are predominant compounds containing Cr in solid waste and are frequently formed during thermal treatment of solid waste. (AlxCr1-x)2O3 and (FexCr1-x)2O3 have superior thermomechanical properties and excellent corrosion resistance. However, oxidation and reduction reactions of the Cr in these solid solutions seriously affect their chemical stabilities and the environmental risks posed by the final products. In this study, first the reaction behaviors of (AlxCr1-x)2O3 and (FexCr1-x)2O3 at high temperatures were analyzed and whether the incorporation of Cr(III) in solid solutions can prevent Cr(III) from being oxidized was determined. Both (AlxCr1-x)2O3 and (FexCr1-x)2O3 without the presence of CaO exhibit good thermal stability at high temperatures. However, the participation of CaO induces Cr(III) oxidation in (AlxCr1-x)2O3 and (FexCr1-x)2O3 at 500-1000 °C. Cr(III) oxidation in these solid solutions is accompanied by the formation of CaCrO4 and Fe2O3 or Al2O3. Al2O3 combines with CaCrO4 and further forms a more stable Cr(VI) compound (e.g., Ca4Al6O12CrO4). While Fe2O3 combines with CaCrO4 at 1000-1200 °C. This is accompanied by the formation of CaCr2O4 and CaFe2O4, which effectively promotes the reduction of Cr(VI). Moreover, part of the CaCr2O4 transforms into a more stable phase (i.e., FeCr2O4) at 1200-1300 °C. Although the incorporation of Cr(III) in these solid solutions cannot prevent Cr(III) oxidation completely at high temperatures, the Cr(III) oxidation in these solid solutions is still suppressed compared with Cr2O3. The results of this study provide further insights into the oxidation and reduction reactions of Cr-hosting compounds during thermal treatment of solid waste.


Chromium , Solid Waste , Chromium/analysis , Hot Temperature , Oxidation-Reduction
4.
Sci Total Environ ; 800: 149634, 2021 Dec 15.
Article En | MEDLINE | ID: mdl-34426319

Cr-hosting spinels are frequently formed during heating of solid wastes containing multiple metals, and its oxidation reaction (Cr(III) → Cr(VI)) is closely related with the toxicity of products. This study examined the reaction behaviors of Cr-hosting spinels (ZnCr2O4, CuCr2O4 and NiCr2O4) at high temperature and proposed possible oxidation mechanism. Cr-hosting spinels alone usually exhibit good thermal stability at high temperature. However, CaO can trigger the oxidation of Cr(III) in Cr-hosting spinels at 500-900 °C and ZnCr2O4 is easier to be oxidized than NiCr2O4 and CuCr2O4 at same condition. The oxidation of Cr-hosting spinels is accompanied with the formation of CaCrO4 and divalent metal oxides (ZnO, NiO and CuO). The broken and rebuilding of CrO bonds are key steps for Cr-hosting spinels oxidation, blocking the combination of free Cr with Ca and O atoms maybe more effective approach for suppressing Cr(III) oxidation. Furthermore, CaO can trigger the reduction of CaCrO4 into a new Cr(V) compound (Ca5(CrO4)3O0.5) at 900-1200 °C. As the temperature rising to 1300 °C, CuO reacts with CaCrO4 to form CuCrO2, in which Cu(II) and Cr(VI) are reduced into Cu(I) and Cr(III) respectively. This study provided some new knowledge for the reaction behavior of Cr-hosting spinels when solid wastes containing Cr were treated at high temperature.


Heating , Solid Waste , Aluminum Oxide , Chromium , Magnesium Oxide , Oxidation-Reduction
5.
Materials (Basel) ; 13(11)2020 Jun 03.
Article En | MEDLINE | ID: mdl-32503230

Strength is an important parameter for the design of asphalt pavement materials and structures. To study the influence of various factors on the three-dimensional strength of asphalt mixtures, three aggregate gradations (dense-graded bituminous mixture AC-13, stone mastic asphalt SMA-13 and bituminous stabilization aggregate paving mixture OGFC-13) and two binders (SBS modified bitumen and 70# base bitumen) were used to prepare the asphalt mixture specimens. Among them, SBS+SMA-13 asphalt mixture has the best performance. On this basis, the uniaxial compressive test, uniaxial tensile test and confining triaxial test were conducted on the SBS+SMA-13 asphalt mixture under six oil-stone ratios conditions (5.5%, 5.7%, 5.9%, 6.1%, 6.3%, and 6.5%), six temperatures conditions (5 °C, 10 °C, 15 °C, 20 °C, 25 °C, and 30 °C), and five loading rates conditions (1 mm/min, 2 mm/min, 3 mm/min, 4 mm/min, and 5 mm/min). In addition, a unified three-dimensional strength calculation model considering the influence of temperature, loading rate, and oil-stone ratio was proposed, and the change law of the three-dimensional strength with these above factors was revealed. Furthermore, two sets of three-factor three-level orthogonal tests were carried out on the SMA-13 asphalt mixture. The sensitivity analysis and strength regulation research between three-dimensional strength and each factor were carried out. The results show that the type of asphalt has the greatest influence on the strength of the mixture, the temperature has the second most influence, the loading rate has less influence, and the oil-stone ratio has the least influence. The strength regulations proposed to improve the strength of the asphalt mixture include the use of modified asphalt, high-temperature stability high-quality asphalt, and the lower oil-stone ratio than the Marshall optimal oil-stone ratio. The strength control measures proposed from the perspective of the three-dimensional stress state, the joint failure of each stress components and real stress states are taken into consideration.

...