Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Total Environ ; 948: 174867, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39032753

RESUMEN

Tims Branch riparian wetland located in South Carolina, USA has immobilized 94 % of the U released >50 years ago from a nuclear fuel fabrication facility. Sediment organic matter (OM) has been shown to play an important role in immobilizing U. Yet, uranium-OM-mineral interactions at the molecular scale have never been investigated at ambient concentrations. The objectives of this study were to extract, purify, and concentrate U-bound sediment OM along the stream water pathway and perform molecular characterization using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). Out of 9614 identified formulas, 715 contained U. These U-containing formulas were enriched with Fe, N, and/or S compared to the total OM. Lignin-like and protein-like molecules accounted for 40 % and 19 % of the U-containing formulas, respectively. Phosphorus-containing formulas were found to exert an insignificant influence on complexing U. U-containing formulas in the 'mobile' (groundwater extractable) OM fraction had lower (reduced) nominal oxidation states of carbon (NOSC); and less aromatic moieties than OM recovered from the 'immobile' (sodium pyrophosphate extractable) OM fraction. U-containing formulas in the redox interfacial zones (stream banks) compared to those in nearby up-slope zones tended to have smaller molecular weights; lower NOSC; higher contents of COO and/or CONO functional groups; and higher abundance of Fe-containing formulas. Fe was present in 38 % of the U-containing formulas but only 20 % of the total OM formulas. It is postulated that Fe played an important role in stabilizing the structure of sedimentary OM, especially U-containing compounds. The identification for the first time of hundreds of Fe-U-OM formulas demonstrates the complexity of such system is much greater than commonly believed and numerically predicting U binding behavior in OM-rich systems may require greater use of statistical or artificial intelligence approaches rather than deterministic approaches limited to measuring metal complexation with well-defined individual analogue organic ligands.

2.
J Appl Physiol (1985) ; 136(5): 1245-1259, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385183

RESUMEN

Anemia and renal failure are independent risk factors for perioperative stroke, prompting us to assess the combined impact of acute hemodilutional anemia and bilateral nephrectomy (2Nx) on microvascular brain Po2 (PBro2) in a rat model. Changes in PBro2 (phosphorescence quenching) and cardiac output (CO, echocardiography) were measured in different groups of anesthetized Sprague-Dawley rats (1.5% isoflurane, n = 5-8/group) randomized to Sham 2Nx or 2Nx and subsequently exposed to acute hemodilutional anemia (50% estimated blood volume exchange with 6% hydroxyethyl starch) or time-based controls (no hemodilution). Outcomes were assessed by ANOVA with significance assigned at P < 0.05. At baseline, 2Nx rats demonstrated reduced CO (49.9 ± 9.4 vs. 66.3 ± 19.3 mL/min; P = 0.014) and PBro2 (21.1 ± 2.9 vs. 32.4 ± 3.1 mmHg; P < 0.001) relative to Sham 2Nx rats. Following hemodilution, 2Nx rats demonstrated a further decrease in PBro2 (15.0 ± 6.3 mmHg, P = 0.022). Hemodiluted 2Nx rats did not demonstrate a comparable increase in CO after hemodilution compared with Sham 2Nx (74.8 ± 22.4 vs. 108.9 ± 18.8 mL/min, P = 0.003) that likely contributed to the observed reduction in PBro2. This impaired CO response was associated with reduced fractional shortening (33 ± 9 vs. 51 ± 5%) and increased left ventricular end-systolic volume (156 ± 51 vs. 72 ± 15 µL, P < 0.001) suggestive of systolic dysfunction. By contrast, hemodiluted Sham 2Nx animals demonstrated a robust increase in CO and preserved PBro2. These data support the hypothesis that the kidney plays a central role in maintaining cerebral perfusion and initiating the adaptive increase in CO required to optimize PBro2 during acute anemia.NEW & NOTEWORTHY This study has demonstrated that bilateral nephrectomy acutely impaired cardiac output (CO) and microvascular brain Po2 (PBro2), at baseline. Following acute hemodilution, nephrectomy prevented the adaptive increase in CO associated with acute hemodilution leading to a further reduction in PBro2, accentuating the degree of cerebral tissue hypoxia. These data support a role for the kidney in maintaining PBro2 and initiating the increase in CO that optimized brain perfusion during acute anemia.


Asunto(s)
Anemia , Gasto Cardíaco , Circulación Cerebrovascular , Hemodilución , Nefrectomía , Ratas Sprague-Dawley , Animales , Hemodilución/métodos , Nefrectomía/métodos , Ratas , Masculino , Circulación Cerebrovascular/fisiología , Anemia/fisiopatología , Gasto Cardíaco/fisiología , Modelos Animales de Enfermedad , Encéfalo/fisiopatología
4.
Curr Opin Cardiol ; 38(6): 533-538, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37610413

RESUMEN

PURPOSE OF REVIEW: Anemia is prevalent in patients with acute coronary syndromes. In this setting, there is uncertainty and controversy surrounding the optimal transfusion strategy for managing anemia. The goal of this review is to summarize the current clinical evidence, guidelines, and future directions for managing transfusion in acute coronary syndromes. RECENT FINDINGS: There is limited evidence from randomized trials evaluating restrictive versus liberal transfusion in patients hospitalized with and/or for acute coronary syndromes. The results from these studies suggest clinical equipoise between transfusion strategies for short term outcomes, and a trend toward favoring a liberal strategy for long term major adverse cardiac events. There is inconsistency across clinical practice guidelines with respect to the optimal strategy for managing anemia and transfusion in acute coronary syndromes due to insufficient evidence. SUMMARY: More evidence is urgently needed to conclusively establish the optimal strategy for transfusion management in the setting of acute coronary syndromes. These data will directly inform harmonization of clinical practice guidelines. Future investigations should explore alternative strategies to hemoglobin for quantifying the degree of anemic stress for personalizing transfusion therapy, the effects on functional outcomes, and managing anemia following hospital discharge.

5.
World J Stem Cells ; 15(4): 182-195, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37180999

RESUMEN

A century has passed since the Nobel Prize winning discovery of insulin, which still remains the mainstay treatment for type 1 diabetes mellitus (T1DM) to this day. True to the words of its discoverer Sir Frederick Banting, "insulin is not a cure for diabetes, it is a treatment", millions of people with T1DM are dependent on daily insulin medications for life. Clinical donor islet transplantation has proven that T1DM is curable, however due to profound shortages of donor islets, it is not a mainstream treatment option for T1DM. Human pluripotent stem cell derived insulin-secreting cells, pervasively known as stem cell-derived ß cells (SC-ß cells), are a promising alternative source and have the potential to become a T1DM treatment through cell replacement therapy. Here we briefly review how islet ß cells develop and mature in vivo and several types of reported SC-ß cells produced using different ex vivo protocols in the last decade. Although some markers of maturation were expressed and glucose stimulated insulin secretion was shown, the SC-ß cells have not been directly compared to their in vivo counterparts, generally have limited glucose response, and are not yet fully matured. Due to the presence of extra-pancreatic insulin-expressing cells, and ethical and technological issues, further clarification of the true nature of these SC-ß cells is required.

6.
Braz. J. Anesth. (Impr.) ; 73(2): 186-197, March-Apr. 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1439585

RESUMEN

Abstract Anemia is associated with increased risk of Acute Kidney Injury (AKI), stroke and mortality in perioperative patients. We sought to understand the mechanism(s) by assessing the integrative physiological responses to anemia (kidney, brain), the degrees of anemia-induced tissue hypoxia, and associated biomarkers and physiological parameters. Experimental measurements demonstrate a linear relationship between blood Oxygen Content (CaO2) and renal microvascular PO2 (y = 0.30x + 6.9, r2= 0.75), demonstrating that renal hypoxia is proportional to the degree of anemia. This defines the kidney as a potential oxygen sensor during anemia. Further evidence of renal oxygen sensing is demonstrated by proportional increase in serum Erythropoietin (EPO) during anemia (y = 93.806*10−0.02, r2= 0.82). This data implicates systemic EPO levels as a biomarker of anemia-induced renal tissue hypoxia. By contrast, cerebral Oxygen Delivery (DO2) is defended by a profound proportional increase in Cerebral Blood Flow (CBF), minimizing tissue hypoxia in the brain, until more severe levels of anemia occur. We hypothesize that the kidney experiences profound early anemia-induced tissue hypoxia which contributes to adaptive mechanisms to preserve cerebral perfusion. At severe levels of anemia, renal hypoxia intensifies, and cerebral hypoxia occurs, possibly contributing to the mechanism(s) of AKI and stroke when adaptive mechanisms to preserve organ perfusion are overwhelmed. Clinical methods to detect renal tissue hypoxia (an early warning signal) and cerebral hypoxia (a later consequence of severe anemia) may inform clinical practice and support the assessment of clinical biomarkers (i.e., EPO) and physiological parameters (i.e., urinary PO2) of anemia-induced tissue hypoxia. This information may direct targeted treatment strategies to prevent adverse outcomes associated with anemia.


Asunto(s)
Humanos , Hipoxia Encefálica/complicaciones , Accidente Cerebrovascular , Lesión Renal Aguda/etiología , Anemia/complicaciones , Oxígeno , Biomarcadores , Riñón , Hipoxia/complicaciones
7.
Braz J Anesthesiol ; 73(2): 186-197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36377057

RESUMEN

Anemia is associated with increased risk of Acute Kidney Injury (AKI), stroke and mortality in perioperative patients. We sought to understand the mechanism(s) by assessing the integrative physiological responses to anemia (kidney, brain), the degrees of anemia-induced tissue hypoxia, and associated biomarkers and physiological parameters. Experimental measurements demonstrate a linear relationship between blood Oxygen Content (CaO2) and renal microvascular PO2 (y = 0.30x + 6.9, r2 = 0.75), demonstrating that renal hypoxia is proportional to the degree of anemia. This defines the kidney as a potential oxygen sensor during anemia. Further evidence of renal oxygen sensing is demonstrated by proportional increase in serum Erythropoietin (EPO) during anemia (y = 93.806*10-0.02, r2 = 0.82). This data implicates systemic EPO levels as a biomarker of anemia-induced renal tissue hypoxia. By contrast, cerebral Oxygen Delivery (DO2) is defended by a profound proportional increase in Cerebral Blood Flow (CBF), minimizing tissue hypoxia in the brain, until more severe levels of anemia occur. We hypothesize that the kidney experiences profound early anemia-induced tissue hypoxia which contributes to adaptive mechanisms to preserve cerebral perfusion. At severe levels of anemia, renal hypoxia intensifies, and cerebral hypoxia occurs, possibly contributing to the mechanism(s) of AKI and stroke when adaptive mechanisms to preserve organ perfusion are overwhelmed. Clinical methods to detect renal tissue hypoxia (an early warning signal) and cerebral hypoxia (a later consequence of severe anemia) may inform clinical practice and support the assessment of clinical biomarkers (i.e., EPO) and physiological parameters (i.e., urinary PO2) of anemia-induced tissue hypoxia. This information may direct targeted treatment strategies to prevent adverse outcomes associated with anemia.


Asunto(s)
Lesión Renal Aguda , Anemia , Hipoxia Encefálica , Accidente Cerebrovascular , Humanos , Hipoxia/complicaciones , Anemia/complicaciones , Riñón , Oxígeno , Hipoxia Encefálica/complicaciones , Lesión Renal Aguda/etiología , Biomarcadores , Periodo Perioperatorio/efectos adversos
8.
J Lipid Res ; 63(6): 100224, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35568254

RESUMEN

Anabolic metabolism of carbon in mammals is mediated via the one- and two-carbon carriers S-adenosyl methionine and acetyl-coenzyme A. In contrast, anabolic metabolism of three-carbon units via propionate has not been shown to extensively occur. Mammals are primarily thought to oxidize the three-carbon short chain fatty acid propionate by shunting propionyl-CoA to succinyl-CoA for entry into the TCA cycle. Here, we found that this may not be absolute as, in mammals, one nonoxidative fate of propionyl-CoA is to condense to two three-carbon units into a six-carbon trans-2-methyl-2-pentenoyl-CoA (2M2PE-CoA). We confirmed this reaction pathway using purified protein extracts provided limited substrates and verified the product via LC-MS using a synthetic standard. In whole-body in vivo stable isotope tracing following infusion of 13C-labeled valine at steady state, 2M2PE-CoA was found to form via propionyl-CoA in multiple murine tissues, including heart, kidney, and to a lesser degree, in brown adipose tissue, liver, and tibialis anterior muscle. Using ex vivo isotope tracing, we found that 2M2PE-CoA also formed in human myocardial tissue incubated with propionate to a limited extent. While the complete enzymology of this pathway remains to be elucidated, these results confirm the in vivo existence of at least one anabolic three- to six-carbon reaction conserved in humans and mice that utilizes propionate.


Asunto(s)
Carbono , Propionatos , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Animales , Carbono/metabolismo , Hígado/metabolismo , Ratones , Oxidación-Reducción
9.
Mol Cell ; 82(2): 447-462.e6, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856123

RESUMEN

Quantitative subcellular metabolomic measurements can explain the roles of metabolites in cellular processes but are subject to multiple confounding factors. We developed stable isotope labeling of essential nutrients in cell culture-subcellular fractionation (SILEC-SF), which uses isotope-labeled internal standard controls that are present throughout fractionation and processing to quantify acyl-coenzyme A (acyl-CoA) thioesters in subcellular compartments by liquid chromatography-mass spectrometry. We tested SILEC-SF in a range of sample types and examined the compartmentalized responses to oxygen tension, cellular differentiation, and nutrient availability. Application of SILEC-SF to the challenging analysis of the nuclear compartment revealed a nuclear acyl-CoA profile distinct from that of the cytosol, with notable nuclear enrichment of propionyl-CoA. Using isotope tracing, we identified the branched chain amino acid isoleucine as a major metabolic source of nuclear propionyl-CoA and histone propionylation, thus revealing a new mechanism of crosstalk between metabolism and the epigenome.


Asunto(s)
Acilcoenzima A/metabolismo , Compartimento Celular , Núcleo Celular/metabolismo , Metabolismo Energético , Histonas/metabolismo , Metabolómica , Procesamiento Proteico-Postraduccional , Animales , Diferenciación Celular , Cromatografía Liquida , Citosol/metabolismo , Epigénesis Genética , Células Hep G2 , Humanos , Isoleucina , Metaboloma , Ratones , Mitocondrias/metabolismo , Oxígeno/metabolismo , Espectrometría de Masa por Ionización de Electrospray
10.
Mol Metab ; 30: 61-71, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31767181

RESUMEN

OBJECTIVE: The dynamic regulation of metabolic pathways can be monitored by stable isotope tracing. Yet, many metabolites are part of distinct processes within different subcellular compartments. Standard isotope tracing experiments relying on analyses in whole cells may not accurately reflect compartmentalized metabolic processes. Analysis of compartmentalized metabolism and the dynamic interplay between compartments can potentially be achieved by stable isotope tracing followed by subcellular fractionation. Although it is recognized that metabolism can take place during biochemical fractionation of cells, a clear understanding of how such post-harvest metabolism impacts the interpretation of subcellular isotope tracing data and methods to correct for this are lacking. We set out to directly assess artifactual metabolism, enabling us to develop and test strategies to correct for it. We apply these techniques to examine the compartment-specific metabolic kinetics of 13C-labeled substrates targeting central metabolic pathways. METHODS: We designed a stable isotope tracing strategy to interrogate post-harvest metabolic activity during subcellular fractionation using liquid chromatography-mass spectrometry (LC-MS). RESULTS: We show that post-harvest metabolic activity occurs rapidly (within seconds) upon cell harvest. With further characterization we reveal that this post-harvest metabolism is enzymatic and reflects the metabolic capacity of the sub-cellular compartment analyzed, but it is limited in the extent of its propagation into downstream metabolites in metabolic pathways. We also propose and test a post-labeling strategy to assess the amount of post-harvest metabolism occurring in an experiment and then to adjust data to account for this. We validate this approach for both mitochondrial and cytosolic metabolic analyses. CONCLUSIONS: Our data indicate that isotope tracing coupled with sub-cellular fractionation can reveal distinct and dynamic metabolic features of cellular compartments, and that confidence in such data can be improved by applying a post-labeling correction strategy. We examine compartmentalized metabolism of acetate and glutamine and show that acetyl-CoA is turned over rapidly in the cytosol and acts as a pacemaker of anabolic metabolism in this compartment.


Asunto(s)
Redes y Vías Metabólicas/fisiología , Metabolómica/métodos , Fracciones Subcelulares/metabolismo , Acetilcoenzima A/metabolismo , Animales , Compartimento Celular , Línea Celular , Cromatografía Liquida/métodos , Fibroblastos , Células Hep G2 , Humanos , Marcaje Isotópico/métodos , Cinética , Espectrometría de Masas/métodos , Ratones
12.
Cell Rep ; 28(8): 1971-1980.e8, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433975

RESUMEN

Reprogrammed metabolism and cell cycle dysregulation are two cancer hallmarks. p16 is a cell cycle inhibitor and tumor suppressor that is upregulated during oncogene-induced senescence (OIS). Loss of p16 allows for uninhibited cell cycle progression, bypass of OIS, and tumorigenesis. Whether p16 loss affects pro-tumorigenic metabolism is unclear. We report that suppression of p16 plays a central role in reprogramming metabolism by increasing nucleotide synthesis. This occurs by activation of mTORC1 signaling, which directly mediates increased translation of the mRNA encoding ribose-5-phosphate isomerase A (RPIA), a pentose phosphate pathway enzyme. p16 loss correlates with activation of the mTORC1-RPIA axis in multiple cancer types. Suppression of RPIA inhibits proliferation only in p16-low cells by inducing senescence both in vitro and in vivo. These data reveal the molecular basis whereby p16 loss modulates pro-tumorigenic metabolism through mTORC1-mediated upregulation of nucleotide synthesis and reveals a metabolic vulnerability of p16-null cancer cells.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleótidos/metabolismo , Isomerasas Aldosa-Cetosa/metabolismo , Animales , Línea Celular , Senescencia Celular , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones SCID , Vía de Pentosa Fosfato , Biosíntesis de Proteínas
13.
Nat Immunol ; 20(9): 1186-1195, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31384058

RESUMEN

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


Asunto(s)
Glucosa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Acetilcoenzima A/biosíntesis , Acetilación , Animales , Femenino , Histonas/metabolismo , Inflamación/patología , Lipopolisacáridos , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción
14.
Proc Natl Acad Sci U S A ; 116(32): 16028-16035, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31253706

RESUMEN

Diseases associated with mitochondrial DNA (mtDNA) mutations are highly variable in phenotype, in large part because of differences in the percentage of normal and mutant mtDNAs (heteroplasmy) present within the cell. For example, increasing heteroplasmy levels of the mtDNA tRNALeu(UUR) nucleotide (nt) 3243A > G mutation result successively in diabetes, neuromuscular degenerative disease, and perinatal lethality. These phenotypes are associated with differences in mitochondrial function and nuclear DNA (nDNA) gene expression, which are recapitulated in cybrid cell lines with different percentages of m.3243G mutant mtDNAs. Using metabolic tracing, histone mass spectrometry, and NADH fluorescence lifetime imaging microscopy in these cells, we now show that increasing levels of this single mtDNA mutation cause profound changes in the nuclear epigenome. At high heteroplasmy, mitochondrially derived acetyl-CoA levels decrease causing decreased histone H4 acetylation, with glutamine-derived acetyl-CoA compensating when glucose-derived acetyl-CoA is limiting. In contrast, α-ketoglutarate levels increase at midlevel heteroplasmy and are inversely correlated with histone H3 methylation. Inhibition of mitochondrial protein synthesis induces acetylation and methylation changes, and restoration of mitochondrial function reverses these effects. mtDNA heteroplasmy also affects mitochondrial NAD+/NADH ratio, which correlates with nuclear histone acetylation, whereas nuclear NAD+/NADH ratio correlates with changes in nDNA and mtDNA transcription. Thus, mutations in the mtDNA cause distinct metabolic and epigenomic changes at different heteroplasmy levels, potentially explaining transcriptional and phenotypic variability of mitochondrial disease.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Epigenoma , Acetilcoenzima A/metabolismo , Línea Celular , Histonas/metabolismo , Humanos , Metaboloma , Mitocondrias/metabolismo , NAD/metabolismo , Transcripción Genética
15.
PLoS One ; 14(2): e0211821, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30785914

RESUMEN

OBJECTIVE: Cancer diagnosis during pregnancy occurs in 1 out of 1000 pregnancies with common malignancies including breast and hematological cancers. Fetal exposure to currently utilized agents is poorly described. We directly assessed fetal exposure by screening meconium from 23 newborns whose mothers had undergone treatment for cancer during pregnancy. STUDY DESIGN: Meconium was collected from newborns whose mothers were diagnosed with cancer during pregnancy and underwent chemotherapy in the second or third trimester as part of the Cancer and Pregnancy Registry. We conducted screening of 23 meconium samples for chemotherapeutics and known metabolites of chemotherapeutics by liquid chromatography-high resolution mass spectrometry (LC-HRMS). Putative identification of paclitaxel and/or its metabolites was made in 8 screened samples. In positively screened samples, we quantified paclitaxel, 3'-p-hydroxypaclitaxel, and 6α-hydroxypaclitaxel by stable isotope dilution-LC-HRMS. RESULTS: Mean (standard deviation) levels of paclitaxel in positively screened samples were 399.9 (248.6) pg/mg in meconium samples from newborn born to mothers that underwent chemotherapy during pregnancy. 3'-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel mean levels were 105.2 (54.6) and 113.4 (48.9) pg/mg meconium, respectively. CONCLUSION: Intact paclitaxel, 3'-p-hydroxypaclitaxel, and 6α-hydroxypaclitaxel were detected in meconium, providing unambiguous confirmation of human fetal exposure. Variability in meconium levels between individuals may indicate a potential for reducing fetal exposure based on timing, dosing, and individual characteristics. This preliminary study may provide an approach for examining the effects of cancer diagnosis during pregnancy on other outcomes by providing a measure of direct fetal exposure.


Asunto(s)
Meconio/metabolismo , Neoplasias , Paclitaxel , Complicaciones Neoplásicas del Embarazo , Sistema de Registros , Adulto , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Estudios Longitudinales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Paclitaxel/administración & dosificación , Paclitaxel/farmacocinética , Embarazo , Complicaciones Neoplásicas del Embarazo/tratamiento farmacológico , Complicaciones Neoplásicas del Embarazo/metabolismo , Espectrometría de Masas en Tándem
16.
Anal Biochem ; 568: 65-72, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605633

RESUMEN

Quantification of cellular deoxyribonucleoside mono- (dNMP), di- (dNDP), triphosphates (dNTPs) and related nucleoside metabolites are difficult due to their physiochemical properties and widely varying abundance. Involvement of dNTP metabolism in cellular processes including senescence and pathophysiological processes including cancer and viral infection make dNTP metabolism an important bioanalytical target. We modified a previously developed ion pairing reversed phase chromatography-mass spectrometry method for the simultaneous quantification and 13C isotope tracing of dNTP metabolites. dNMPs, dNDPs, and dNTPs were chromatographically resolved to avoid mis-annotation of in-source fragmentation. We used commercially available 13C15N-stable isotope labeled analogs as internal standards and show that this isotope dilution approach improves analytical figures of merit. At sufficiently high mass resolution achievable on an Orbitrap mass analyzer, stable isotope resolved metabolomics allows simultaneous isotope dilution quantification and 13C isotope tracing from major substrates including 13C-glucose. As a proof of principle, we quantified dNMP, dNDP and dNTP pools from multiple cell lines. We also identified isotopologue enrichment from glucose corresponding to ribose from the pentose-phosphate pathway in dNTP metabolites.


Asunto(s)
Desoxirribonucleótidos/análisis , Técnicas de Dilución del Indicador , Espectrometría de Masas , Isótopos de Carbono , Células Cultivadas , Cromatografía Liquida , Desoxirribonucleótidos/metabolismo , Humanos , Marcaje Isotópico , Isótopos de Nitrógeno
17.
Artículo en Inglés | MEDLINE | ID: mdl-29740888

RESUMEN

RATIONALE: Lactate and pyruvate are high abundance products of glucose metabolism. Analysis of both molecules as part of metabolomics studies in cellular metabolism and physiology have been aided by advances in liquid chromatography-mass spectrometry (LC-MS). METHODS: We used ion pairing-chromatography and negative ion mode ESI on an QExactive HF to perform stable isotope assisted metabolomics profiling of lactate and pyruvate metabolism. RESULTS: Using an LC-MS method for polar metabolite analysis we discovered an artefactual formation of pyruvate from in-source fragmentation of lactate. Surprisingly, this in-source fragmentation has not been previously described, thus we report this identification to warn other investigators. This artefact was detected by baseline chromatographic resolution of lactate and pyruvate by LC with confirmation of this artefact by stable isotope labeling of lactate and pyruvate. CONCLUSIONS: These findings have immediate implications for metabolomics studies by LC-MS and direct infusion MS, especially in negative ion mode, whereby users should resolve lactate from pyruvate or robustly quantify the potential formation of pyruvate from higher abundance lactate in their assays.

19.
BMC Ophthalmol ; 13: 66, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24180233

RESUMEN

BACKGROUND: Previous studies have established that radiation to the head and neck leads to atherosclerosis and stenosis of the carotid artery and subsequent increased stroke risk, but the ophthalmic sequella following cervical irradiation is less well-defined. CASE PRESENTATION: We present a single case of branch retinal artery occlusion (BRAO) in a 55 year-old Caucasian male seen at the University of Michigan in 2008 following unilateral head and neck radiation. CONCLUSION: This case demonstrates that patients receiving radiation to the head and neck may be at increased risk for developing a BRAO secondary to atherosclerotic changes of vessels adjacent to the radiation target. Given this risk, it may be reasonable to obtain carotid artery imaging in patients with a history of cervical radiation who present with sudden or transient visual field defects, even in the absence of other conventional risk factors for atherosclerosis.


Asunto(s)
Carcinoma de Células Escamosas/radioterapia , Irradiación Craneana/efectos adversos , Oclusión de la Arteria Retiniana/etiología , Neoplasias Tonsilares/radioterapia , Humanos , Masculino , Persona de Mediana Edad
20.
BMC Res Notes ; 6: 109, 2013 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-23522030

RESUMEN

BACKGROUND: Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). "Turnkey" solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. FINDINGS: Here we present an efficient and effective solution, which provides experimental biologists easy access to "cloud" computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. CONCLUSIONS: Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.


Asunto(s)
Biología Computacional/métodos , Espectrometría de Masas/métodos , Proteómica/métodos , Algoritmos , Área Bajo la Curva , Biomarcadores/metabolismo , Interpretación Estadística de Datos , Humanos , Internet , Proteoma , Reproducibilidad de los Resultados , Estadística como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA